

Quickstart Apache Axis2

A practical guide to creating quality web services

Deepal Jayasinghe

 BIRMINGHAM - MUMBAI

Quickstart Apache Axis2

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2008

Production Reference: 1160508

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847192-86-8

www.packtpub.com

Cover Image by Vinayak Chittar (vinayak.chittar@gmail.com)

Credits

Author

Deepal Jayasinghe

Reviewers

Ramanujam A. Rao

Senior Acquisition Editor

Rashmi Phadnis

Technical Editor

Shilpa Dube

Editorial Team Leader

Mithil Kulkarni

Project Manager

Abhijeet Deobhakta

Project Coordinator

Patricia Weir

Indexer

Monica Ajmera

Proofreader

Chris Smith

Production Coordinator

Aparna Bhagat

Cover Work

Aparna Bhagat

About the Author

Deepal Jayasinghe is a Technical Lead at WSO2 Inc., an open-source software
development company that creates middleware platforms for Web Services. He
joined WSO2, Inc. in August, 2005. He has more than 3 years of experience with
SOA and Web Services in addition to being a contributing member of the Apache
Axis2 project since its inception. He is a key architect and a developer of the Apache
Axis2 Web Service project and has led a number of releases. In addition to Axis2,
he has made major contributions to Apache Synapse, Apache Axiom, and Apache
XMLSchema projects. Deepal has written more than 30 technical magazine articles,
research papers, and has delivered speeches in various SOA and Web Services
conferences. He is an Apache Web Services PMC member, an Apache committer,
and an Apache Member. His expertise lies mainly in distributed computing,
fault-tolerant systems, and Web Services-related technologies. He has a B.Sc. in
Engineering from the University of Moratuwa, Sri Lanka and and will be starting
graduate studies at Georgia Institute of Technology in fall, 2008.

Contact: deepalk@gmail.com.

First of all, I want to thank the Apache Axis2 developers and Axis2
community who have contributed towards making this Web Services
framework a world-renowned success in a relatively short period of
time. Thank you!

I would like to thank Dr Sanjiva Weerawarana, Founder, Chairman
and CEO of WSO2, Inc., without whose support, vision, guidance,
and belief in my work this effort would never have been realized.
I owe countless thanks to my parents and dear wife for always
being there and supporting me in so many ways. This book would
not have been possible without everything that they have done
for me. Special thanks to my colleagues Suran Jayathilaka, Devaka
Randeniya, and Charitha Kankanamage for reviewing my writings,
validating the samples, providing insight, and contributing to this
effort in many other ways. Special thanks to Srinath Hemapani,
Ajith Ranabahu, Eran Chinthaka, Davanam Sirinivas, Glen Daniels,
Paul Fremantle, Chathura Herath, Jaliya Ekanayake, and all
other key members of the Axis2 team without whose tremendous
contributions and wisdom Axis2 would not have been possible.
For the creation of this work, I am blessed with a strong team of
technical reviewers, superior editorial and production professionals
from Packt Publishing. My sincere thanks to all of you for your
tireless efforts.

 About the Reviewer

Ramanujam A. Rao is a software architect and an engineer with over 12 years
of experience in designing and developing large-scale enterprise applications. He
is currently involved in consulting in the area of enterprise-application architecture
and helps to build scalable and distributed applications. He also has expertise in
building enterprise-technology standards and cultivating architecture capabilities.

He lives in Columbus, OH, USA with his wife and two-year old daughter.

Contact: arrao@acm.org.

Table of Contents
Preface	 1
Chapter 1: Introduction	 7

Web Service History	 7
Web Services Overview	 8

How Do Organizations Move into Web Services?	 9
Web Services Model	 10
Web Services Standards	 10

XML-RPC	 11
SOAP	 12
Web Services Addressing (WS-Addressing)	 12
Service Description	 13

Web Services Description Language (WSDL)	 13
Web Services Life Cycle	 14
Apache Web Service Stack	 14
Why Axis2?	 15
Download and Install Axis2	 16

Binary Distribution	 16
WAR Distribution	 17
Source Distribution	 18
JAR Distribution	 18

Summary	 18
Chapter 2: Looking into Axis2	 19

Axis2 Architecture	 19
Core Modules	 20

XML Processing Model	 21
SOAP Processing Model	 21
Information Model	 23
Deployment Model	 24
Client API	 25
Transports	 26

Other Modules	 27
Code Generation	 27
Data Binding	 27

Extensible Nature of Axis2	 28
Service Extension of the Module	 28

Table of Contents

[ii]

Custom Deployers	 29
Message Receivers	 29

Summary	 29
Chapter 3: AXIOM	 31

Overview and Features	 31
What is Pull Parsing?	 32

AXIOM—Architecture	 32
Working with AXIOM	 33

Creating an AXIOM	 33
Creating an AXIOM from an Input Stream	 34
Creating an AXIOM Using a String	 35
Creating an AXIOM Programmatically	 35
Adding a Child Node and Attributes	 36
Working with OM Namespaces	 37
Working with Attributes	 37
Traversing the AXIOM Tree	 38
Serialization	 38
Advanced Operations with AXIOM	 40
Using OMNavigator for Traversing	 40
Xpath Navigation	 41
Accessing the Pull-Parser	 41
AXIOM and SOAP	 42

Summary	 43
Chapter 4: Execution Chain	 45

Handler	 45
Writing a Simple Handler	 46

Phase	 48
Types of Phases	 49

Global Phase	 49
Operation Phase	 51

Phase Rules	 51
Phase Name	 52
phaseFirst	 52
phaseLast	 52
before	 52
after	 53
after and before	 53

Invalid Phase Rules	 53
Flow	 54

Module Engagement and Dynamic Execution Chain	 55

Table of Contents

[iii]

Special Handlers in the Chain	 56
TransportReceiver	 56
Dispatchers	 56
MessageReceiver	 57
TransportSender	 58

Summary	 58
Chapter 5: Hacking Deployment	 59

What's New in Axis2 Deployment?	 59
J2EE-like Deployment Mechanism	 60
Hot Deployment and Hot Update	 61
Repository	 62
Change in the Way of Deploying Handlers (Modules)	 62
New Deployment Descriptors	 63

Global Descriptor (axis2.xml)	 64
Service Descriptor (services.xml)	 64
Module Descriptor (module.xml)	 65

Available Deployment Options	 65
Archive-Based Deployment	 66
Directory-Based Deployment	 66
Deploying a Service Programmatically	 66
POJO Deployment	 67
Deploying and Running a Service in One Line	 69

Summary	 69
Chapter 6: Information Model	 71

Introduction	 71
Axis2 Static Data	 71

AxisConfiguration	 73
Parameters	 75
MessageFormatters and MessageBuilders	 76
TransportReceiver and TransportSender	 76
Flows and PhaseOrder	 76

AxisModule	 77
Service Description Hierarchy	 77

AxisServiceGroup	 78
AxisService	 78
AxisOperation	 78
AxisMessage	 79

Axis2 Contexts	 79
ConfigurationContext	 80
ServiceGroupContext	 81
ServiceContext	 81

Table of Contents

[iv]

OperationContext	 81
MessageContext	 82

Summary	 82
Chapter 7: Writing an Axis2 Service	 83

Introduction	 83
Code-First Approach	 84

Single-Class POJO Approach	 84
POJO with Class Having Package Name	 86

Deploying a Service Using a Service Archive File	 87
Writing the services.xml File	 88
Service Implementation Class	 89
Specifying the Message Receiver	 89
Creating a Service Archive File	 89
Different Ways of Specifying Message Receivers	 89

Specify Message Receivers at the Operation Level	 90
Specify Message Receivers at the Service Level for the Whole Service	 90
Specify Service-Level Message Receivers and Override Them with Operations	 91

Service Group and Single Service	 92
Adding Third-Party Resources	 92
Service WSDL and Schemas	 93

Contract-First Approach—Starting from WSDL	 94
Generating Code	 94
Filling the Service Skeleton	 94
Running the Ant Build File	 95
Deploying the Ant-Created Service Archive File	 95

Summary	 95
Chapter 8: Writing an Axis2 Module	 97

Introduction	 97
Module Concept	 98
Module Structure	 98

Module Configuration File (module.xml)	 99
Handlers and Phase Rules	 100
Parameters	 102

Module Implementation Class	 102
WS-Policy	 105
Endpoints	 105

Writing the module.xml File	 106
Deploying and Engaging the Module	 107

Advanced module.xml	 109
Summary	 110

Table of Contents

[�]

Chapter 9: Client API	 111
Introduction	 111
Blocking and Non-Blocking Invocation	 111
Inside Axis2 Client API	 112

ServiceClient API	 113
Available Ways of Creating a ServiceClient	 113
ServiceClient with a Working Sample	 115

Working with OperationClient	 122
Summary	 124

Chapter 10: Session Management	 125
Introduction	 125
Stateless Nature of Axis2	 126
Types of Sessions in Axis2	 126
Session Creation and Session Destruction	 128

Java Reflection	 128
Using the Optional Interface	 128
Accessing MessageContext	 129

Request Session Scope	 129
SOAP Session Scope	 131
Transport Session Scope	 133
Application Scope	 134

Managing Session Using ServiceClient	 135
Summary	 135

Chapter 11: Contract First or Code First	 137
Introduction	 137
Code-First Approach	 137
Why Not the Code-First Approach?	 139
Contract-First Approach: Why is it So Special?	 140
Code-Generation Support in Axis2	 140

Sample 1: Use Default Code-Generation Options to Generate
Server-Side Code	 141
Sample 2: Use a Different Databinding	 143
Sample 3: Generate an Interface Instead of a Concrete Class	 143
Sample 4: Generating Client-Side Code	 144

Summary	 146
Chapter 12: Advanced Topics	 147

REST—Representational State Transfer	 147
Features of REST	 147
REST Services in Axis2	 148

Table of Contents

[vi]

MTOM—Message Transmission Optimization Mechanism	 149
MTOM on the Client Side	 152
MTOM on the Service Side	 152

Axis2 ClassLoader Hierarchy	 153
Sharing Libraries Using the Class Loader Hierarchy	 154
Axis2 Configurator	 155
Deploying Axis2 in Various Application Servers	 156
Summary	 157

Index	 159

Preface
A new architecture for Axis2 was introduced during the first Axis2 summit, which
was held in 2004 in Colombo, Sri Lanka. This new architecture is more flexible,
efficient, and configurable in comparison to Axis1.x architecture. Some well
established concepts from Axis 1.x, like handlers, have been preserved in the
new architecture.

Since its introduction less than four years ago, Apache Axis2 has become widely
accepted as a framework for practical Web Service development, which is suitable
not only for commercial application development, but also as a teaching tool and
as a research platform. Apache Axis2 itself has evolved during the past three years,
taking into consideration community requirements, and has acquired a number of
new features. All of these have been contributed in an effort to create a simple and
easy-to-use Web Service framework.

The main goal of this book is to provide an introduction to Axis2. It teaches how
to develop web applications using Axis2 and how to make proper use of available
features. It does not attempt to cover either Web Services or Axis2 in minute detail,
opting rather to provide a good understanding for using both. The in-depth technical
details of Axis2, I believe, are best covered in a book in their own right.

When designing and writing this book, my objective was to achieve a number of
goals. Firstly, I wanted to present a very clear introductory text, free of verbosity
and nonsense, so that a beginner can understand the concepts easily and develop
confidence for using the technology within a short period of time. Secondly, I have,
as far as possible, tried to cover the concepts in the form of a discussion combined
with the instruction style of a tutorial, so that the reader can try out the concepts for
himself/herself and grasp them easily. Because of this most of the chapters contain a
plethora of comprehensive samples. Thirdly, I have intentionally avoided presenting
full descriptions of Axis2 features, while making sure that no important points
have been omitted. Descriptions of some of the minor and rarely used features have
been left out for the sake of simplicity. And finally, I want this book to help you, the
reader, explore, understand, and realize the potential of Web Services and Axis2.

Preface

[�]

What This Book Covers
This book is organized in a such a way that it will lead you to gain a very good
understanding of Web Services and Axis2. At the end of the book, you will have
become familiar with most of the commonly used Axis2 features and concepts. You
will be able to write a Web Service, invoke a remote Service, and extend the core
functionality of Axis2.

Chapter 1 defines Web Services, their architecture, and components. It also discusses
the Apache Web Services stack and the motivation for Axis2. Finally, it tells you how
to go about downloading and deploying Axis2.

Chapter 2 gives an overview of the Axis2 architecture, its dominant features and
extensible nature. Furthermore, it opens the way to learning key terminologies used
in Axis2 and getting familiar with them.

Chapter 3 introduces AXIOM, the Axis2 object model and discusses the key features
of AXIOM with code samples.

Chapter 4 discusses the smallest execution unit in Axis2—a handler, and then
discusses phase and phase rules. Finally, it describes the execution chain and how to
change it using phase rules.

Chapter 5 describes how deployment works and available deployment mechanisms
in Axis2.

Chapter 6 discusses the dynamic and static data hierarchies in Axis2; how they are
stored, how they get created and related, and so on.

Chapter 7 discusses everything you need to know about how to write and deploy
a Web Service in Axis2. This includes both POJO and archive-based service
development.

Chapter 8 discusses everything about how to write and deploy a service extension or
a module in Axis2.

Chapter 9 discusses the Axis2 client API, synchronous and asynchronous Web Service
invocations, and different configuration options available for the client side.

Chapter 10—If you are looking to implement session-aware services then this chapter
will help you out as it describes the types of available sessions in Axis2 and their
proper usage.

Chapter 11 describes how Axis2 handles POJOs, Axis2 data-binding, and
code generation.

Preface

[�]

Chapter 12 discusses other features of Axis2 such as REST support and MTOM
as well as the advanced configuration mechanism of Axis2. Finally, it discusses
deploying Axis2 in various application severs.

What You Need for This Book
This book is completely based on version 1.3 of Axis2, which is one of the most stable
and widely used versions of Axis2. Axis2 1.3 is compatible with JDK 1.4 and above.

Who This Book is For
This book explains and demonstrates the core features of Axis2 and its architecture.
Even though Axis2 makes the development of Web Service applications
much easier and simpler, it is still a fairly complex piece of middleware that
requires a considerable amount of time and effort to master. This book provides
straightforward explanations and samples of the underlying technologies and
features of Axis2.

As the name of the book implies, "Quickstart Apache Axis2" can be considered an
introductory-level book for getting started with Axis2, learning and applying Web
Services concepts in practice easily. In order to gain the most from this book, you
should have good understanding of the Java programming language. Experience
with SOA (Service-Oriented Architecture) and Web Services is not a must to
understand the concepts and examples discussed here. I would recommend this
book for users who want to start using Axis2 as well those looking to master it.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "A module
will not be functional unless it has a module.xml file."

A block of code will be set as follows:

public OMNamespace declareNamespace(String uri, String prefix);

public OMNamespace declareNamespace(OMNamespace namespace);
public OMNamespace findNamespace(String uri, String prefix) throws
OMException;

Preface

[�]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

<handler name="simple_HandlerError" class="org.apache.axis.handlers.
SimpleHandlerError">
 ������������������������������ ��� <order phase="userphase1" before=" simple_Handler"
phaseFirst="true"/>
</handler>

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"Click on the Administration tab".

Important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us
a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[�]

Downloading the Example Code for the Book
Visit http://www.packtpub.com/files/code/2868_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Introduction
Axis2, the next generation of the Apache Web Service stack, has taken one more step
closer to the first production version by releasing another developer version. In this
chapter, we will learn more about Web Services, their history, and the standards as
well as the components of Web Services. At the end of the chapter, we will discuss
the need for a new Web Service engine, and finally how to install and run Axis2.

Web Service History
The era of isolated computers is over; now, "connected we stand, isolated we fall" is
becoming the motto of computing. Networking and communication facilities have
connected the world in a way they have never done before. The world involves
hardware that can support the systems that connect thousands of computers, and
those systems have the capacity to wield power that was once only dreamed of.

But, computer science still lacked the technologies and abstraction in order to utilize
the established communication networks. The goal of distributed computing is to
provide such abstractions. RPC, RMI, IIOP, and CORBA are few proposals that
provide abstractions over the network for the developers to build upon.

These proposals fail to consider the critical nature of the problem. The systems are a
composition of numerous heterogeneous sub-systems. The above proposals require
all the participants to share a particular programming language, or a few of those
languages. Web Services provide an answer by defining a common XML-based wire
representation for the interactions, thus enabling the different systems to interact.

Web Services define SOAP, the message format. They also define WSDL, which is
a common way to describe Web Services. Different programming languages may
define different implementations for Web Services, yet they interoperate because
they all agree on the format of the information they share.

Introduction

[�]

Web Services Overview
The Internet is revolutionizing business by providing an affordable and efficient
way to link companies with their partners as well as to their customers. However,
there are certain issues that reduce the effectiveness of the Internet. Among those
issues, incompatible applications and frameworks that cannot interoperate or that
cannot exchange business data have become a major concern. The Web Service is
a new e-business model that is expected to change in a way in which the business
applications are developed, integrated, and interoperated. Web Services are
self-describing and self-contained. A Web Service is a modular application that is
accessible over the web. It is exposed as an XML interface, and it communicates with
other services by using XML messages over standard Web protocols.

W3C, one of the standard bodies of Web Services defines a Web Service as a software
system designed to support interoperable machine-to-machine interaction over a
network. It has an interface described in a machine-processable and human readable
format called WSDL (Web Services Description Language). Other applications
communicate with the Web Service in a manner prescribed by its description using
SOAP (Simple Object Access Protocol) messages, typically conveyed using HTTP
with an XML serialization in conjunction with other web-related standards.

The Web Service, a very well known open technology standard provides a number
of benefits as listed below:

1.	 Increase competition among vendors, resulting in lower product costs.
2.	 Ease transition from one product to another, resulting in lower training costs.
3.	 Increase the ability for parties to interoperate, resulting in lower

maintenance costs.
4.	 Ensure a greater degree of adoption and longevity for a standard. A large

degree of usage from the vendors and the users leads to a higher degree
of acceptance.

One can argue that the Web Service concept is a logical evolution from an
object-oriented system to a system of services. As in an object-oriented system, some
of the fundamental concepts in Web Services are encapsulation, message passing,
and dynamic binding. However, the service-based concept is extended beyond
method signatures. The information as to what the service does, where is it located,
how it is invoked, the quality of service, and the security policy related to the service
can be published in the service interface (WSDL).

Chapter 1

[�]

How Do Organizations Move into Web
Services?
There are three main ways in which an organization can move into Web Services.
These are as follows:

1.	 Creating a new Web Service from scratch. The developer creates the
functionalities of the services as well as preparing a document to describe
those services.

2.	 Exposing an existing functionality through a Web Service. Here, the
functionalities of the service already exist. Only the service description needs
to be implemented.

3.	 Integrating Web Services from other vendors or business partners. There are
instances where using a service implemented by another is more feasible than
building from scratch. On these occasions, the organization will be required to
integrate others' or even business partners' Web Services.

The real utility of the Web Service concept is present in the second and the third
methods, which leads to other Web Services and applications that can be used in
existing applications.

Web Services describe a new model for using the Web. This model allows
publication of business functions to the Web and provides universal access to
those business functions. Both developers and end users benefit from Web
Services. The Web Service model simplifies business application development and
interoperation. In addition to that, Web Services serve the users' needs by enabling
them to choose, configure, and assemble their own Web Services through an
intuitive, browser-based interface.

The fundamental concept behind Web Services is the SOA (Service-Oriented
Architecture), where an application is no longer a large monolithic program, but is
divided into smaller, loosely coupled programs, and provided services are loosely
coupled together with standardized and well-defined interfaces. These loosely
coupled programs make the architecture very extensible, as it acquires the ability to
add or remove services with limited costs. Therefore, new services can be created by
combining existing services.

Introduction

[10]

Web Services Model
The Web Services Model consists of basic functionalities such as describe, publish,
discover, bind, invoke, update, and unpublish. In the meantime, the model consists of
three actors: service provider, service broker, and service requester. The functionalities
as well as actors are shown in the figure below:

Service Provider

The Service Provider is an individual (organization) that provides services. The Service
Provider's job is to create, publish, maintain, and unpublish their services. From a
business point of view, the Service Provider is the owner of the service, whereas from
an architectural view, it is a platform that holds the implementation of the service.

Service Broker

The Service Broker provides a repository of service descriptions (WSDL). These
descriptions are published by the service provider. Service Requesters will search
the repository to identify the needed services, and obtain the binding information
for these services. A service broker can either be public, where the services are
universally accessible, or private, where only specified sets of Service Requesters are
able to access the service.

Service Requester

The Service Requester is a party that looks for a service to fulfill its requirements.
A requester can either be a human accessing the service, or an application program
(The program could also be another service). From a business view, it is a business
that wants to consume a particular service. From an architectural view, it is an
application that looks for and invokes a service.

Web Services Standards
Web Services are one of the key technologies in today's software industry. As a
result, we are in a rapid development process and the stack of interrelated standards
that characterize the Web Services infrastructure is maturing. The growing collection

Chapter 1

[11]

of WS-* standards, supervised by the Web Services governing bodies defines the
Web Service protocol stack, as shown in the figure below. Here, we will be looking at
the standards that are specified in the most basic layers: messaging and description
and discovery.

The messaging standards are intended to give a framework in order to exchange
information in a distributed environment. These standards have to be reliable so that
the messages are sent only once, and only the intended receiver receives them. This
is one of the primary areas wherein a lot of research work is being done, because
everything depends on the messaging ability.

XML-RPC
The XML-RPC standard was created by Dave Winer in 1998 with Microsoft. The
available RPC systems seemed very bulky. Therefore, in order to create a light-
weight system, the developer simplified them by specifying only the essentials, and
defining only a handful of data types and commands. This protocol uses XML to
encode its calls to HTTP as a transport mechanism. The message is sent as a POST
request, where the body of the request is in XML. A procedure is executed on the
server and the returned value is formatted into XML. The parameters can be scalars,
numbers, strings, or dates, as well as complex record and list structures.

As new functionalities were introduced, XML-RPC evolved into SOAP. Still, some
people prefer using XML-RPC because of its simplicity, minimalism, and ease of use.

Introduction

[12]

SOAP
The SOAP standard was originally designed by four developers with the backing
of Microsoft as an object-access protocol. The protocol specifies the exchange of
XML-based messages over computer networks in a transport-independent
manner. The developers had chosen XML as the standard message format because
of its widespread use by major organizations and open-source initiatives. Also,
there is a wide variety of freely available tools that ease transition to a
SOAP-based implementation.

The concept of SOAP is a stateless, one-way message exchange paradigm. However
applications can create more complex interaction patterns, such as request-response,
request-multiple responses, and so on. This is done by combining such one-way
exchanges with features provided by an underlying protocol and application-specific
information. In addition, SOAP provides the framework by which application-
specific information may be conveyed in an extensible manner.

Web Services Addressing
(WS-Addressing)
It would have been quite useful, if there had been a standard way to express where a
message should be delivered in a Web Services network. This could reduce the work
load of the developers so they were able to simplify Web Services communication
and development, and thus avoid the need to develop costly, ad hoc solutions
that are often difficult to interoperate across platforms. WS-Addressing addresses
this and enables organizations to build reliable and interoperable Web Service
applications by defining a standard mechanism for identifying and exchanging Web
Service messages between multiple end points.

Web Services Addressing provides transport-independent mechanisms to address
messages and identify Web Services, corresponding to the concepts of address
and message correlation described in the Web Services architecture. Web Services
Addressing defines XML elements to identify Web Services endpoints, and to secure
end-to-end identification of endpoints in messages. This enables messaging systems
to support message transmission through networks that include processing nodes
such as endpoint managers, firewalls, and gateways in a transport-neutral manner.

Chapter 1

[13]

Service Description
It is important to note that the description of a Web Service is essential for classifying,
discovering, and using the service. The description should be understandable for
humans as well as applications. A Web Service description is required at the semantic
level as well as at the syntactic level. The semantic information has to contain details
about the service provider as to what the service does and its characteristics such as
reliability, security, and sequencing of messages. The semantic information enables
the service requesters to decide whether a service satisfies their needs, or not.
Also, brokers can use the semantic information to categorize the service. Syntactic
information describes how to use the service, and may also be concerned about the
non-functional requirements such as security, as well as authentication.

Web Services Description Language (WSDL)
WSDL, developed by IBM, Ariba, and Microsoft, is an XML-based language that
provides a model for describing Web Services. The standard defines services as
network endpoints or ports. WSDL is normally used in combination with SOAP and
XML schema in order to provide Web Services over networks. A service requester
that connects to a Web Service can read the WSDL to determine the functions that are
available in the Web Service. Special data types are embedded in the WSDL file in
the form of an XML Schema. The client can then use SOAP to call functions listed in
the WSDL.

WSDL enables one to separate the description of the abstract functionality offered
by a service from concrete details of a service description such as how and where
that functionality is offered. WSDL specification defines a language for describing
the abstract functionality of a service as well as a framework for describing the
concrete details of a service description. The abstract definition of ports and
messages is separated from their concrete use, allowing the reuse of the interface.
A port is defined by associating a network address with a reusable binding. A
collection of ports defines a service. Messages are abstract descriptions of the data
being exchanged and port types are abstract collections of supported operations.
The concrete protocol and the data format specifications for a particular port type
together constitute a reusable binding, where the messages and operations are then
bound to a concrete network protocol and message format to define an endpoint.

Introduction

[14]

Web Services Life Cycle
As shown in the figure below, Web Services consist of a number of activities. These
activities can be divided into two layers: a basic layer and a value-added layer.
The basic layer consists of the main activities that have to be supported by any Web
Service. The value-added layer adds value, and thus enhances the performance of
the Web Service.

The first activity is the creation of the Web Service. This can be achieved either by
building from scratch, or by integrating existing Web Services. After creating the Web
Service, it has to be described so that others can access it. Then, it has to be published
on the Web. The discovery of a Web Service can be facilitated by a service broker who
will support requirement analysis and description of a requester's need, and then
matching the users' needs to available Web Services, negotiation, and binding. After
the Web Service has been discovered, and it has been decided to use the Web Service,
a number of activities related to contracting takes place. During the life time of a Web
Service, it will be updated and maintained throughout by the service provider. If the
Web Service description is changed, then it will be updated at the service broker's end.
Finally, the service can remain unpublished, if it is no longer available or needed.

Apart from these basic activities, some value-added activities need to take place for a
Web Service to function effectively. Activities such as monitoring, billing, reliability,
and security have to be implemented.

These Web Service activities can take place only at one site; that is, while some of
these activities will take place at the service provider's site, some will take place at
the service broker's site, and the rest will be at the service requestor's site. This does
not mean that a particular site can only play one role; it can play multiple roles.

Apache Web Service Stack
The history of Web Services has gone through several iterations during its evolution.
The first generation of Web Services were highly controlled interactions, and can
be considered mere tests of feasibility. Apache SOAP was one of the notable SOAP
engines in the first generation. It was meant mainly to be a "proof of concept", and
not at all concerned about performance. The whole idea of the first generation SOAP
engines was to convince the world that Web Services are a feasible option.

Chapter 1

[15]

Soon, the interest in these first generation SOAP engines paid off. More companies
started showing interest and the SOA started building up. This stage can be called
the second generation of Web Services, and it required better and faster SOAP
engines. Aspects such as discovery and definition are already standardized, and
SOAP engines are also required to support these standards. Apache Axis was born as
one of the second generation SOAP engines.

Now, the second generation of Web Services is also coming to an end. Web Services
are becoming highly demanding, and a large number of players have entered into
the Web Service arena. Aspects governing different facets of Web Service interactions
have been standardized. The third generation of Web Services requires faster and
more robust SOAP engines, as the existing Axis is not good enough. Axis2 was made
to fill this gap.

Why Axis2?
As we have discussed earlier, Web Services are growing rapidly and a large
number of organizations have moved to the Web Services field. As a result , new
requirements have been encountered, and new standards are being defined. At the
same time, the organizations are not just looking for Web Services. They also pay
attention to the reliability, security, and performance of Web Services. In addition
to these requirements, new WS* specifications have been defined, and Web Service
engine need to support them.

While considering the Apache Web Service stack, Axis1 is one of the stable Web
Service engines. A number of organizations as well as a number of applications use
Axis1. So, changing Axis1 architecture to support the new requirements as well as
new Web Service standards was not a good idea. In the meantime, software has
its own life cycle. It can evolve up to a certain point and after that, a revolution is
needed. The same theory was applicable to Axis1 as well. Rather than change the
Axis1 architecture, the Apache Web Service development team came up with a
new architecture.

In addition to the new requirements and the WS* specifications, performance was
another area of major concern. Changing the Axis1 architecture in order to improve
its performance was not that easy. Axis1 uses DOM as its XML representation
mechanism. As a result, complete messages need to be loaded into the memory
before the processing starts. The system slows down and the memory usage also
increases. Therefore, one of the key requirements behind the introduction of Axis2
was to improve system performance.

Introduction

[16]

The Apache Web Service community discussed and agreed to introduce a new Web
Service engine called "Axis2" with a number of new requirements. It requires a very
flexible and an easily extensible architecture that supports WS* standard as well as
future standards. As a result, Axis2 or The Apache third-generation Web Service
engine came into picture.

Download and Install Axis2
Apache Axis2 had a number of releases. Among them, release 1.3 can be considered
one of the most robust releases. This book is also based on that particular release.
As a result of Axis2 using an incremental development process, there might be
compatible issues from one release to another, since there are instances where Axis2
changes its API in order to increase its flexibility as well as usability.

One of the points in an open-source project is that its release consists of source code,
which is used to create the binary files by compilation and linking. Each Axis2 release
also consists of a source code distribution in addition to its binary distribution.

We can download the latest Axis2 release from http://ws.apache.org/
axis2/download.cgi. Each Axis2 release consists of four main release artifacts
or distributions:

Binary distribution
WAR distribution
Source distribution
JAR distribution

Binary Distribution
An Axis2 binary distribution consists of all the relevant third-party libraries, a set of
samples, and the Axis2 runtime. Installing a binary distribution involves extracting
ZIP archive files into a desired location. Once we download and extract the binary
distribution, then we will be able to see a set of subdirectories inside it (bin, lib,
samples, repository, webapp).

We can use the Axis2 binary distribution to develop and deploy our enterprise-level
applications. The distribution consists of all the resources that are required to develop
Web Service application with Axis2. Once we develop our Web Service application, we
can deploy that in the same distribution. We can use the binary distribution to start a
standalone server, or to create a WAR file to deploy in the application server.

•

•

•

•

Chapter 1

[17]

Starting Axis2 as a standalone server is just a matter of running either a bat or a
script file in the bin directory. Once we run axis2server.sh (or .bat) and type
localhost:8080/axis2, then we can see a list of available services in the system,
which indicates whether the server is up and running.

WAR Distribution
The Axis2 WAR distribution is useful for deploying Axis2 in application servers
such as Tomcat, Jboss, Weblogic, and so on. We can deploy the Axis2 WAR file into
an application server, and check whether it works by typing the server address in
a browser. As an example, if you deploy the Axis2 WAR file in Apache Tomcat,
by typing http://localhost:8080/axis2, we can figure out whether Axis2 is
up and running. However, the Axis2 WAR distribution does not have any Web
Services other than the version service. So, by the deploying default WAR file in an
enterprise-level application, we will not gain anything.

To add a new Web Service in Axis2, we need to add the corresponding resources
into a WAR file. But most of the application servers do not unpack the WAR file.
Therefore, when we use a WAR file in a real application, we have to unpack the
WAR file, put our resource into it and then deploy it. However, if the application
server unpacks the WAR file, then we can drop our new Web Service into the unpack
location. We will be learning about Axis2 Web Services in detail, later in this book.

The following are the steps for installing the WAR distribution:

Step 1: Install the application server. If we do not have any application server in
our machine, then we need to download and install an application server. Among
the available application servers, Apache Tomcat can be considered one of the best
application servers. We can download Tomcat (4.x or above) and install it.

Step 2: Depending on an application server, we can find the location where we need
to deploy WAR files. If we take Tomcat as an example, then we need to put the WAR
file into the webapps directory. So let's drop the Axis2 WAR distribution into the
webapps directory of the application server.

Step 3: As a final step, open the browser and type localhost:8080/axis2. Thus, we
will be able to view the Axis2 web application homepage (here, the URL might be
different depending on the application server).

Introduction

[18]

Source Distribution
As the name implies, the source distribution consists of the source code that is
used to build the binary distribution. Since Apache Axis2 is released under the
Apache license, we are free to use the source code. We can also use the Axis2 source
distribution in order to hack Axis2. In addition to that, we can help fix issues in the
project and can contribute to the open-source community.

When we develop real-world applications, it is always useful to have the source code
in addition to the documentation as that helps to debug an application as well. In the
meantime, the source distribution consists of Maven scripts (http://maven.apache.
org) and we can use them to create either a binary distribution, WAR distribution, or
a JAR distribution.

JAR Distribution
When we want to develop a Web Service application, then we need to have an Axis2
library. The Axis2 JAR Distribution is the Axis2 library. To develop a Web Service
application on Axis2, we need to have Axis2 libraries, meaning Axis2 JAR files. In the
meantime, there are a number of projects that depends on Axis2, and they need to
have the Axis2 library distribution.

Summary
Is the Web Services concept a new revolutionary technology? The idea of splitting
large programs into smaller modules is an established principle of higher-level
programming languages. Even in assembly programming, procedures were separated
from other program parts for better re-usability. Languages such as CORBA can
be used to connect programs over a network with a language-independent remote
procedure call protocol that already exists with CORBA. CORBA also has an Interface
Definition Language (IDL) similar to WSDL. As a fact, the popularity of Web Services
is achieved by the standardization of techniques, and by standards that are adaptable
to different situations. There a number of solutions exist to realize these concepts of
Web Services.

Looking into Axis2
Flexibility and extensibility are two main design criteria that software designers would
like to have in their applications. When it comes to Axis2, its architecture is extremely
flexible and extensible. Axis2 has a modular architecture. In this chapter, we will learn
more about Axis2 architecture, its core components, and its main features.

Axis2 Architecture
Axis2 is built upon a modular architecture that consists of core modules and
non-core modules. The core engine is said to be a pure SOAP processing engine
(there is not any JAX-PRC concept burnt into the core). Every message coming into
the system has to be transformed into a SOAP message before it is handed over to
the core engine. An incoming message can either be a SOAP message or a non-SOAP
message (REST JSON or JMX). But at the transport level, it will be converted into a
SOAP message.

When Axis2 was designed, the following key rules were incorporated into the
architecture. These rules were mainly applied to achieve a highly flexible and
extensible SOAP processing engine:

Separation of logic and state to provide a stateless processing mechanism.
(This is because Web Services are stateless.)
A single information model in order to enable the system to suspend
and resume.
Ability to extend support to newer Web Service specifications with minimal
changes made to the core architecture.

•

•

•

Looking into Axis2

[20]

The figure below shows all the key components in Axis2 architecture (including core
components as well as non-core components).

Core Modules
XML Processing Model: Managing or processing the SOAP message is the
most difficult part of the execution of a message. The efficiency of message
processing is the single most important factor that decides the performance
of the entire system. Axis1 uses DOM as its message representation
mechanism. However, Axis2 introduced a fresh XML InfoSet-based
representation for SOAP messages. It is known as AXIOM (AXIs Object
Model). AXIOM encapsulates the complexities of efficient XML processing
within the implementation.
SOAP Processing Model: This model involves the processing of an incoming
SOAP message. The model defines the different stages (phases) that the
execution will walk through. The user can then extend the processing model
in specific places.
Information Model: This keeps both static and dynamic states and has the
logic to process them. The information model consists of two hierarchies to
keep static and run-time information separate. Service life cycle and service
session management are two objectives in the information model.
Deployment Model: The deployment model allows the user to easily deploy
the services, configure the transports, and extend the SOAP Processing
Model. It also introduces newer deployment mechanisms in order to handle
hot deployment, hot updates, and J2EE-style deployment.
Client API: This provides a convenient API for users to interact with Web
Services using Axis2. The API consists of two sub-APIs, for average and
advanced users. Axis2 default implementation supports all the eight MEPs
(Message Exchange Patterns) defined in WSDL 2.0. The API also allows easy
extension to support custom MEPs.

•

•

•

•

•

Chapter 2

[21]

Transports: Axis2 defines a transport framework that allows the user to
use and expose the same service in multiple transports. The transports fit
into specific places in the SOAP processing model. The implementation, by
default, provides a few common transports (HTTP, SMTP, JMX, TCP and so
on). However, the user can write or plug-in custom transports, if needed.

XML Processing Model
As mentioned in Chapter 1, Axis2 is built on a completely new architecture
as compared to Axis 1.x. One of the key reasons for introducing Axis2 was to
have a better, and an efficient XML processing model. Axis 1.x used DOM as its
XML representation mechanism, which required the complete object hierarchy
(corresponding to incoming message) to be kept in memory. This will not be a problem
for a message of small size. But when it comes to a message of large size, it becomes an
issue. To overcome this problem, Axis2 has introduced a new XML representation.

AXIOM (AXIs Object Model) forms the basis of the XML representation for every
SOAP-based message in Axis2. The advantage of AXIOM over other XML InfoSet
representations is that it is based on the PULL parser technique, whereas most others
are based on the PUSH parser technique. The main advantage of PULL over PUSH
is that in the PULL technique, the invoker has full control over the parser and it can
request the next event and act upon that, whereas in case of PUSH, the parser has
limited control and delegates most of the functionality to handlers that respond to
the events that are fired during its processing of the document.

Since AXIOM is based on the PULL parser technique, it has 'on-demand-building'
capability whereby it will build an object model only if it is asked to do so. If
required, one can directly access the underlying PULL parser from AXIOM, and use
that rather than build an OM (Object Model).

SOAP Processing Model
Sending and receiving SOAP messages can be considered two of the key jobs of the
SOAP-processing engine. The architecture in Axis2 provides two Pipes ('Flows'),
in order to perform two basic actions. The AxisEngine or driver of Axis2 defines
two methods, send() and receive() to implement these two Pipes. The two pipes
are named InFlow and OutFlow. The complex Message Exchange Patterns (MEPs)
are constructed by combining these two types of pipes. It should be noted that in
addition to these two pipes there are two other pipes as well, and those two help in
handling incoming Fault messages and sending a Fault message.

Extensibility of the SOAP processing model is provided through handlers. When a
SOAP message is being processed, the handlers that are registered will be executed.
The handlers can be registered in global, service, or in operation scopes, and the final
handler chain is calculated by combining the handlers from all the scopes.

•

Looking into Axis2

[22]

The handlers act as interceptors, and they process parts of the SOAP message and
provide the quality of service features (a good example of quality of service is
security or reliability). Usually handlers work on the SOAP headers; but they may
access or change the SOAP body as well.

The concept of a flow is very simple and it constitutes a series of phases wherein a
phase refers to a collection of handlers. Depending on the MEP for a given method
invocation, the number of flows associated with it may vary. In the case of an
in-only MEP, the corresponding method invocation has only one pipe, that is, the
message will only go through the in pipe (inflow). On the other hand, in the case of
in-out MEP, the message will go through two pipes, that is the in pipe (inflow) and
the out pipe (outflow). When a SOAP message is being sent, an OutFlow begins.
The OutFlow invokes the handlers and ends with a Transport Sender that sends the
SOAP message to the target endpoint. The SOAP message is received by a Transport
Receiver at the target endpoint, which reads the SOAP message and starts the
InFlow. The InFlow consists of handlers and ends with the Message Receiver, which
handles the actual business logic invocation.

A phase is a logical collection of one or more handlers, and sometimes a phase itself
acts as a handler. Axis2 introduced the phase concept as an easy way of extending core
functionalities. In Axis 1.x, we need to change the global configuration files if we want
to add a handler into a handler chain. But Axis2 makes it easier by using the concept
of phases and phase rules. Phase rules specify how a given set of handlers, inside a
particular phase, are ordered. The figure below illustrates a flow and its phases.

If the message has gone through the execution chain without having any problem,
then the engine will hand over the message to the message receiver in order to do
the business logic invocation, After this, it is up to the message receiver to invoke
the service and send the response, if necessary. The figure below shows how the
Message Receiver fits into the execution chain.

The two pipes do not differentiate between the server and the client. The SOAP
processing model handles the complexity and provides two abstract pipes to the
user. The different areas or the stages of the pipes are named 'phases' in Axis2.

Chapter 2

[23]

A handler always runs inside a phase, and the phase provides a mechanism to
specify the ordering of handlers. Both pipes have built-in phases, and both define the
areas for 'User Phases', which can be defined by the user, as well.

Information Model
As shown in the figure below, the information model consists of two hierarchies:
"Description hierarchy" and "Context hierarchy". The Description hierarchy
represents the static data that may come from different deployment descriptors. If
hot deployment is turned off, then the description hierarchy is not likely to change.
If hot deployment is turned on, then we can deploy the service while the system
is up and running. In this case, the description hierarchy is updated with the
corresponding data of the service. The context hierarchy keeps run-time data. Unlike
the description hierarchy, the context hierarchy keeps on changing when the server
starts receiving messages.

These two hierarchies create a model that provides the ability to search for key value
pairs. When the values are to be searched for at a given level, they are searched while
moving up the hierarchy until a match is found. In the resulting model, the lower levels
override the values present in the upper levels. For example, when a value has been
searched for in the Message Context and is not found, then it would be searched in
the Operation Context, and so on. The search is first done up the hierarchy, and if the
starting point is a Context then it would search for in the Description hierarchy as well.

This allows the user to declare and override values, with the result being a very
flexible configuration model. The flexibility could be the Achilles' heel of the system,
as the search is expensive, especially for something that does not exist.

Looking into Axis2

[24]

Deployment Model
The previous versions of Axis failed to address the usability factor involved in the
deployment of a Web Service. This was due to the fact that Axis 1.x was released
mainly to prove the Web Service concepts. Therefore in Axis 1.x, the user has to
manually invoke the admin client and update the server classpath. Then, you need to
restart the server in order to apply the changes. This burdensome deployment model
was a definite barrier for beginners. Axis2 is engineered to overcome this drawback,
and provide a flexible, user-friendly, easily configurable deployment model.

Axis2 deployment introduced a J2EE-like deployment mechanism, wherein the
developer can bundle all the class files, library files, resources files, and configuration
files together as an archive file, and drop it in a specified location in
the file system.

The concept of hot deployment and hot update is not a new technical paradigm,
particularly for the Web Service platform. But in the case of Apache Axis, it is a new
feature. Therefore, when Axis2 was developed, "hot" deployment features were
added to the feature list.

Hot deployment: This refers to the capability to deploy services while the
system is up and running. In a real time system or in a business environment,
the availability of the system is very important. If the processing of the
system is slow, even for a moment, then the loss might be substantial and
it may affect the viability of the business. In the meanwhile, it is required to
add new service to the system. If this can be done without needing to shut
down the servers, it will be a great achievement. Axis2 addresses this issue
and provides a Web Service hot deployment ability, wherein we need not
shut down the system to deploy a new Web Service. All that needs to be
done is to drop the required Web Service archive into the services directory
in the repository. The deployment model will automatically deploy the
service and make it available.
Hot update: This refers to the ability to make changes to an existing Web
Service without even shutting down the system. This is an essential feature,
which is best suited to use in a testing environment. It is not advisable to use
hot updates in a real-time system, because a hot update could lead a system
into an unknown state. Additionally, there is the possibility of loosening the
existing service data of that service. To prevent this, Axis2 comes with the hot
update parameter set to FALSE by default.

•

•

Chapter 2

[25]

Client API
Nowadays, asynchronous or non-blocking Web Service invocation is a key
requirement in Web Services. There are currently two approaches to invoking a Web
Service in a non-blocking manner. The first is the client programming model, where a
client invokes the service in a non-blocking manner. The second way is the transport
level non-blocking invocation where invocation occurs in two transports (it could
either be two single-channel transports like SMTP, or two double-channel transports
like HTTP). Axis2 client API supports both the non-blocking invocation scenarios.

Axis2 introduces a very convenient client API for invoking services that consists of
two classes called "ServiceClient" and "OperationClient". The ServiceClient API is
intended for regular usage when you just require to send and receive XML. On the
other hand, the operation client is meant for advanced usage, when there is a need
to work with SOAP headers and some other advanced tasks. With ServiceClient, we
can only access the SOAP body or the payload. Although we can add SOAP headers,
we do not have any way to retrieve the SOAP header by using the ServiceClient. We
need to use an OperationClient for such a function.

ServiceClient has the following API for invoking a service:

sendRobust: The whole idea of this is to just send an XML request to the
Web Service and not care about its response. However, if something goes
wrong, we require to know that too, so this API invokes a service, where it
does not have a return value but would throw an exception.
FireAndForget: This API is for just sending an XML request and not caring
about either the response, or any exception. Hence, this is useful in invoking
an in-only MEP.
SendReceive: This invokes a service that has a return value. This is
one of the most commonly used APIs. Hence, this is used for invoking an
in-out MEP.
SendReceiveNonBlocking: This invokes a service in a non-blocking manner.
This method can be used when the service has a return value. In order to
use this method, we have to pass a callback object, which is called once the
invocation is complete.

•

•

•

•

Looking into Axis2

[26]

As mentioned earlier, the OperationClient class is for advanced users, and working
with OperationClient requires us to know Axis2 in depth. In ServiceClient, we do not
have to know anything about SOAP envelope, message context, and so on. But when
it comes to OperationClient, the users have to create these by themselves, before
invoking a service. Creating and invoking a service using OperationClient involves
the following steps:

Create a ServiceClient.
Then create OperationClient with the use of the ServiceClient that we
have created.
Create SOAP envelop.
Create Message context.
Add the SOAP envelope to message context.
Add the messagecontext to OperationClient.
Then invoke the OperationClient.
If there is a response, then get the response message context from the
OperationClient.

Transports
In Axis2, each and every transport consists of two parts, namely "Transport
Senders" and "Transport Receivers". We can define transports along with senders
and receivers in Axis2 global configuration. The Transport Receiver is the one via
which, the AxisEngine receives the message whereas the transport sender is the one
that sends out the message. One of the important aspects of Axis2 is that its core is
completely independent of the transport sender and receiver.

Axis2 is built to support the following transport protocols:

HTTP/HTTPS: In HTTP transport, the transport listener is a servlet or org.
apache.axis2.transport.http.SimpleHTTPServer provided by Axis2. The
transport sender uses a common HTTP client for connection and sends the
SOAP message.
TCP: This is the simplest transport and it needs WS-Addressing support in
order to be functional.
SMTP: This requires a single email account. The transport receiver is a
thread that checks for emails at fixed time intervals.
JMS: This provides a way to invoke a Web Service using the JMS way.
XMPP: This provides a standard way to communicate with Jabber server,
and to invoke Web Services using XMPP protocol.

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 2

[27]

Other Modules
Code Generation: Axis2 provides a code generation tool that generates
server-side (skeleton) and client-side (stub or proxy) code along with
descriptors and a test case. The generated code simplifies the service
deployment and the service invocation. This increases the usability
of Axis2.
Pluggable Data Binding: The basic client API of Axis2 lets the user process
SOAP at the XML infoset level, whereas data binding extends it to make
it more convenient for the users by encapsulating the infoset layer and
providing a programming language-specific interface.

Code Generation
Although the basic objective of the code generation tools has not changed, the code
generation module of Axis2 has adopted a different approach. Primarily, the change
is in the use of templates, namely XSL templates, which gives flexibility to the code
generator so as to generate code in multiple languages.

Data Binding
Databinding for Axis2 is implemented in an interesting manner. Databinding has
deliberately not been included in the core, and hence the code generation allows
different data binding frameworks to be plugged in. This is done through an
extension mechanism where the codegen engine calls the extensions first, and then
executes the core emitter. The extensions plot a map of QNames versus class names
that is passed to the code generator wherein the emitter operates.

Axis2 supports the following data binding frameworks including its own data
binding framework called ADB:

ADB: ADB (Axis2 Data Binding) is a simple and lightweight framework that
works off StAX and is fairly performant.
XMLBeans: XMLBeans is preferred if we want to use full schema support as
XMLBeans claims that it supports complete schema specification.
JaxMe: JaxMe support has been added to XMLBeans, and it serves as another
option for the user.
JibX: This is the most recent addition to the family of data binding extensions.

•

•

•

•

•

•

Looking into Axis2

[28]

Extensible Nature of Axis2
In Axis2, there are many ways to extend the functionalities. In this book, we will be
discussing a few of them, which are listed below:

Service extension of the module
Custom deployers
Message Receivers

Service Extension of the Module
Both Axis1 and Axis2 have the concept of handlers but when compared to Axis 1.x,
there are few changes in the way Axis2 specifies and deploys handlers. In Axis 1.x, if
you want to add a handler, then you need to change the global configuration file and
then restart the system. In the meantime, it does not have a way to add or change
handlers dynamically.

To overcome the above problem as well as to add new features, Axis2 introduced
the concept of Web Service extensions or a modules, wherein the main purpose of a
module is to extend the core functionality. It is similar to adding handler chains in
Axis1.x. The advantage of Axis2 modules over Axis 1.x handler chains is that we can
add new modules without changing any global configuration files.

A module is a self-contained package that includes handlers, third-party libraries,
module-related resources, and a module configuration file.

A module can be deployed as an archive file. Axis2 came up with a new file
extension for modules, called ".mar". The most important file in a module archive
file is the module configuration file or module.xml. A module will not be functional
unless it has a module.xml file. A module configuration file mainly specifies handlers
and their phase rules. So once we engage a module, depending on the phase rule, the
handlers will be placed in different flows (inflow, outflow, and so on).

The idea of modules is very simple. To implement support for WS-Addressing or
WS-Security in our services, we need to download the corresponding modules and
drop them into the modules directory of the Axis2 repository. We can engage the
module at deployment time by adding <module ref="module name"/> to axis2.
xml (global configuration file). In addition to that, if we want to engage a module at
run time, we can do that in many ways such as by using Axis2 web admin, handlers,
and so on.

•

•

•

Chapter 2

[29]

Custom Deployers
We can deploy a service in many ways. We could deploy a service as an archive file
(Axis2 default), by creating a service using a database, or by creating a Web Service
using a text file. The idea of custom deployers is to open avenues to support any
kind of deployment mechanisms. Axis2 has in-built support for:

Archive-based deployment (.aar and .mar concept)
POJO deployment (.class or .jar)

But if someone wants to deploy a service, or a module, then he or she can achieve
that goal with the use of custom deployers. We will discuss more about custom
deployers in Chapter 5.

Message Receivers
As we have discussed, the Axis2 execution chain is a collection of phases wherein
each phase is a logical group of handlers. The Message Receiver, in itself, is a
handler. However, it is different from other handlers because Axis2 treats the
Message Receiever in a different manner. If the message has gone through the inflow
with no issues, or in other words, no exceptions have occurred in the middle of
the chain, then the engine hands over the message to the message receiver so as to
invoke the associated business logic.

Message receivers interact directly with both the actual service implementation
class and the AxisEngine. However, there can be some instances wherein there are
no service implementation classes and all the logic is handed inside the Message
Receiver. The message receiver is the last component in the inflow process. Axis2 has
got nothing to do with it once the message is handled over to the message receiver.

Summary
Axis2 is enterprise-ready. Its Web Service engine provides a better SOAP processing
model, with considerable increase in performance for both speed and memory
usage with respect to Axis 1.x and other existing Web Service engines. In addition, it
provides the user with a convenient API for service deployment, extending the core
functionality, and thus acting as a new client programming model. In this chapter,
we have learned about the internals and architecture of Axis2. Thus, we have learned
that Axis2 architecture helps in attaining a more flexible and extensible Axis2.

•

•

AXIOM
AXIOM stands for AXIs Object Model and refers to the XML Infoset model that
was initially developed as a part of Apache Axis2. However, later it became a WS
Commons Project so that the projects other than Axis2 could also benefit from it.
XML Infoset refers to information included in XML. For programmatic manipulation,
it is convenient to have a representation of this XML Infoset in a language-specific
manner. For an object-oriented language, a model made up of objects would be a
the best choice. DOM and JDOM are two such XML models. AXIOM is conceptually
similar to such an XML model by its external behavior. At the end of this chapter,
you will understand the basics in AXIOM and the best practices to be followed while
using AXIOM.

Overview and Features
AXIOM is a lightweight, deferred built XML Infoset representation based on StAX
(JSR 173), which is the standard streaming pull parser API. The object model can
be manipulated flexibly just like any other object model (such as JDOM). But
underneath, the objects will be created only when they are absolutely required. This
leads to much less memory intensive programming.

Looking at the features of AXIOM, deferred building can be considered the best. And
that was one of the design goals of AXIOM too. One of the drawbacks of Axis1 is its
XML representation. AXIOM was introduced to solve those issues, and in addition to
that, has the following key features as well:

Lightweight: AXIOM is specifically targeted to be lightweight. This is
achieved by reducing the depth of the hierarchy, the number of methods,
and the attributes enclosed in the objects. This makes the objects less
memory intensive.

•

AXIOM

[32]

Deferred building: This is one of the most important features of AXIOM.
The objects are not made, unless a need arises for them. This passes the
control of building over to the object model itself, rather than to an
external builder.
Pull-based: For a deferred building mechanism, a pull-based parser is
required. AXIOM is based on StAX, the standard pull parser API.

What is Pull Parsing?
Let us understand the meaning and the concept behind pull parsing. An XML
document can be parsed by using either a "pull-based" process, or a "push-based"
process. Pull parsing is a recent trend in XML processing. The XML processing
frameworks such as SAX and DOM are "push-based", which means that the control
of the parsing is in the hands of the parser itself. This approach is fine and easy
to use, but was not efficient in handling large XML documents, since a complete
document object model was generated in the memory. Pull parsing inverts the
control, and hence, the parser only proceeds at the users command. The user
can decide to store or discard events generated by the parser. OM is based on
pull parsing.

AXIOM—Architecture
The AXIOM architecture is quite simple. Before we delve into the architecture of
AXIOM, we need to learn the basic concepts and usage of AXIOM. The AXIOM
user API, the actual XML stream, and the AXIOM components are shown in the
following figure:

•

•

Chapter 3

[33]

AXIOM is also known as the OM (Object Model), and the OM Builder wraps the raw
XML character stream through the StAX reader API. Hence, the user does not see the
complexities of the pull event stream.

In addition to the deferred building capability, we have another useful feature. This
feature includes caching and non-caching building of the XML tree. Since AXIOM is
a deferred built object model, it incorporates the concept of caching. Caching refers
to the creation of the objects while parsing the pull stream. The reason why this
is so important is because caching can be turned off in certain situations. If so, the
parser proceeds without building the object structure. The user can extract the raw
pull stream from the AXIOM element and use that instead of navigating the AXIOM
element. In this case, it is sometimes beneficial to switch off caching.

Working with AXIOM
We can either download the AXIOM binary, or we can build the binary using the
source distribution (or from the source repository). AXIOM was started as a part of
Axis2, but now, it has its own release cycle. Therefore, we can either download the
an AXIOM binary in AXIOM release, or we can find the AXIOM binary in the
Axis2 release.

Once we have the AXIOM binary, the next step is to add that binary into our
classpath (and the dependent binary files as well). Then, we can start working with
AXIOM. If your application has a build system similar to Maven's, then you can add
dependency to that, and let it download AXIOM JARs automatically.

Creating an AXIOM
We can create an AXIOM in three ways as shown in the following figure.We can
create an AXIOM using either the Pull Event stream or the Push Event stream, or,
we can create an AXIOM programatically. In this chapter, we will learn how to
create an AXIOM using a Pull Event stream, as well as how to create an AXIOM
programmatically, as those are the two most common methods that are used to
create an AXIOM.

AXIOM

[34]

First, let us have a look at how we can create an AXIOM by using a pull event
stream. AXIOM provides the concepts of a factory and a builder, in order to
create objects. The factory helps to keep the code at the interface level and the
implementations separate. Since AXIOM is tightly bound to StAX, a StAX-compliant
reader should be created first with the desired input stream. Then, one can select
a builder from those that are available. In AXIOM, we can find different types of
builders provided for the convenience of different users. AXIOM has OM builders as
well as SOAP builders. So, we can use the appropriate builder for our requirements.
StAXOMBuilder will build a pure XML Infoset-compliant object model, while the
SOAPModelBuilder returns SOAP-specific objects (such as the SOAPEnvelope)
which are subclasses of the OMElement, through its builder methods.

Creating an AXIOM from an Input Stream
The code below demonstrates the correct method of creating an AXIOM document
from a file input stream.

//create the parser
XMLStreamReader parser = XMLInputFactory.newInstance().createXMLStream
Reader(new FileInputStream(file));
//create the builder
StAXOMBuilder builder = new StAXOMBuilder(parser);
//get the root element (in this case the envelope)
OMElement documentElement = builder.getDocumentElement();

The following steps should be adopted to create an AXIOM from an input stream:

Step 1: First, we need to create a parser or a reader. In this case, we will be creating
a parser.

Step 2: Next, we create the builder by using the parser (or reader). In this case, we
create StAXOMBuilder.

Step 3: Get the AXIOM document element from the builder.

Note that when we ask for the document element from the builder, it will give us
a pointer to the AXIOM wrapper. But the XML stream is still present in the stream,
and the object tree is not created at that time. The object tree is created only when we
navigate or build the AXIOM.

Chapter 3

[35]

Creating an AXIOM Using a String
Now let us try to create an AXIOM document from a string, which is very simple
and easy.

String xmlString = "<book>" +
"<name>Quick-start Axis</name>" +
"<isbn>978-1-84719-286-8</isbn>" +
"</book>";
ByteArrayInputStream xmlStream = new ByteArrayInputStream(xmlString.
getBytes());
//create a builder. Since we want the XML as a plain XML, we can just
use
//the plain OMBuilder
StAXBuilder builder = new StAXOMBuilder(xmlStream);
//return the root element.
builder.getDocumentElement();

Thus, we observe that when we create an AXIOM from a string, we first get an input
stream, and then we can follow the same procedure as we have followed earlier.
From the above example, it is clear that creating an AXIOM from an input stream
or from a string is quite simple. However, elements and nodes can also be created
programmatically to modify the structure of the AXIOM element, which we have
created above. The recommended way to create AXIOM objects programmatically is
to use a factory.

The OMAbstractFactory.getOMFactory() method will return the proper factory,
and the creator methods for each type that should be called.

Creating an AXIOM Programmatically
Creating an AXIOM programmatically is a bit more difficult when compared to the
previous two cases. It also involves some additional steps.

//Obtain a factory
OMFactory factory = OMAbstractFactory.getOMFactory();
//use the factory to create two namespace object
OMNamespace axis2 = factory.createOMNamespace("axis2","ns");
//use the factory to create three elements to represent the book
element
OMElement root = factory.createOMElement("book",axis2);
OMElement name = factory.createOMElement("name",axis2);
OMElement isbn = factory.createOMElement("isbn",axis2);

AXIOM

[36]

We can see a set of factory.create methods. These can be used to cater for
different implementations while keeping the programmers code intact. In AXIOM,
it is better to use the factory for creating AXIOM objects, as this will ease the
switching of different AXIOM implementations. Several differences exist between
a programmatically created OMNode and a conventionally created OMNode. The
most important difference is that the former has no builder object enclosed, whereas
the latter always carries a reference to its builder.

As we discussed earlier in this chapter, the object model is built as and when
required. Therefore, each and every OMNode should have a reference to its builder.
If this information is not available, it is due to the object being created without a
builder. This difference becomes evident when the user tries to get a non-caching
pull parser from the OMElement.

The SOAP object hierarchy is made in the most natural way for a Web Service
programmer. An inspection of the API will show that it is quite close to the SAAJ
API, but with no bindings to DOM or any other model. The SOAP classes extend
basic OM classes (such as the OMElement). Hence, one can access a SOAP document
either by the abstraction of SOAP, or drill down to the underlying XML Object model
with a simple casting.

Adding a Child Node and Attributes
So far, we have learned to create an AXIOM programmatically, and by using StAX
API, But this is not enough to work with an AXIOM. We need to learn how to create
and add a child node to an AXIOM.

Addition and removal methods are primarily defined in the OMElement interface.
The following are the important methods for adding nodes:

public void addChild(OMNode omNode);
public void addAttribute(OMAttribute omAttribute);

Now let us try to complete the book element that we have created by adding "name"
and "isbn" child elements to the root element.

root.addChild(name);
root.addChild(isbn);

addChild() will always add the child as the last child of the parent.
A given node can be removed from the tree by calling the detach() method.
A node can also be removed from the tree by calling the remove method of
the returned iterator, which will also call the detach method of a particular
node internally.

•

•

Chapter 3

[37]

Namespaces are a tricky part of any XML object model, and it is the same
in AXIOM. However, the interface to the namespace has been made
very simple. OMNamespace is a class that represents a namespace with
intentionally removed setter methods. This makes the OMNamespace
immutable, and allows the underlying implementation to share the objects
without any difficulty.

Working with OM Namespaces
As we have discussed, namespace handling forms a key part of XML processing.
Hence, AXIOM provides a set of API methods to handle namespaces.

public OMNamespace declareNamespace(String uri, String prefix);
public OMNamespace declareNamespace(OMNamespace namespace);
public OMNamespace findNamespace(String uri, String prefix) throws
OMException;

From the above, it is clear that there are two declareNamespace methods that
are simple to understand. Furthermore, they are used to add a namespace to the
namespace declarations section.

A namespace declaration that has already been added once can not be
added again.

The findNamespace is a very handy method to locate a namespace object in the
object tree. It looks for a matching namespace in its own declaration section and
jumps to the parent node, if it is not found. The search process progresses up the
tree, until a matching namespace is found, or the root has been reached.

During serialization, a directly created namespace from the factory will be added to
the declarations only when that prefix is encountered by the serializer.

We will learn to serialize the AXIOM element later in this chapter. However, if we
serialize the element that we have created, then we get the following output:

<ns:book xmlns:ns="axis2"><ns:name></ns:name><ns:isbn></ns:isbn></ns:
book>

Working with Attributes
Let us now see how to create and add attributes to the book element.

OMAttribute type = factory.createOMAttribute("type",null,

 "web-services");
root.addAttribute(type);

•

AXIOM

[38]

If we serialize the element again, then we will get the following output:

<ns:book xmlns:ns="axis2" type="web-services"><ns:name></ns:name><ns:

isbn></ns:isbn></ns:book>

Traversing the AXIOM Tree
In the previous sections, we learned how to create an AXIOM element. We have
learned to create and add child nodes, and also to create namespaces and attributes.
Now, let us try to traverse the AXIOM tree.

Traversing the object structure can be done in the usual way, by using the list of
child nodes. However, in AXIOM, the child nodes are returned as an iterator. The
iterator supports the 'OM way' of accessing elements, and is more convenient than
a list for sequential access. The code sample below demonstrates how to access the
child nodes in a given node. The children are of the type OMNode, and can be either
of type OMText, or OMElement.

Iterator children = root.getChildren();
while(children.hasNext()){
OMNode node = (OMNode)children.next();
}

In addition to this, every OMNode has links to its siblings. If more thorough navigation
is required, the nextSibling() method or the PreviousSibling() method can
be used. A more selective set can be chosen by using the getChildrenWithName
(QName) methods. The getChildWithName (Qname) method returns an iterator
having all the child elements with the given Qname. The advantage of these iterators
is that they will not build the whole object structure at once, but only when it
is required.

Serialization
Now, since we have a good understanding of creating and traversing the AXIOM
tree, we will learn how to serialize or write the AXIOM tree into an output stream.

The AXIOM can be serialized either as a pure object model, or a pull event stream.
The serialization uses a XMLStreamWriter object to write the output, and hence, the
same serialization mechanism can be used to write different types of outputs (such as
text, binary, and so on).

A caching flag is provided by AXIOM to control the building of the in-memory
AXIOM. The OMNode has two methods, serializeAndConsume as well as
serialize. When serializeAndConsume is called, the cache flag is reset, and
the serializer does not cache the stream. Hence, the object model will not be

Chapter 3

[39]

built if the cache flag is not set. In such a case, it will serialize the XML stream
directory to the output stream, without creating the object model. If we call the
serializeAndConsume method, then we can serialize the AXIOM tree only once,
since it does not build the AXIOM tree into memory. However, we can call the
serialize method any number of times. We will learn the difference between the
above two methods later in this section.

The serializer serializes namespaces in the following ways:

When a namespace is encountered that is in scope and not yet declared, then
it will be declared.
When a namespace is encountered that is in scope and is already declared,
then the existing declarations prefix is used.
When the namespaces are declared explicitly using the elements'
declareNamespace(), they will be serialized even if those namespaces are not
used in that scope.

Because of these behaviors, if a fragment of the XML is serialized, it will also be
namespace-qualified with the necessary namespace declarations. Here is an example
that shows how to write the output to the console:

XMLStreamWriter writer = XMLOutputFactory.newInstance().createXMLStrea
mWriter(System.out);
//dump the output to console with caching
root.serialize(writer);
writer.flush();

Now let us try to understand the difference between the serializeAndConsume()
and serialize() methods. First, let us try to call the serialize method twice in an
AXIOM element as shown in the following sample code:

String xmlStream = "<ns:book xmlns:ns=\"axis2\" type=\"web-services\
"><ns:name></ns:name><ns:isbn></ns:isbn></ns:book>";
//Create an input stream for the string
ByteArrayInputStream byteArrayInputStream = new ByteArrayInputStream
 (xmlStream.getBytes());
//create a builder. Since we want the XML as a plain XML,
 we can just use
//the plain OMBuilder
StAXBuilder builder = new StAXOMBuilder(byteArrayInputStream);
//return the root element.
OMElement root = builder.getDocumentElement();
root.serialize(System.out);
root.serialize(System.out);

•

•

•

AXIOM

[40]

If we run the preceding sample code, then we will see the following output in
the console:

<ns:book xmlns:ns="axis2" type="web-services"><ns:name></ns:name><ns:
isbn></ns:isbn></ns:book>
<ns:book xmlns:ns="axis2" type="web-services"><ns:name></ns:name><ns:
isbn></ns:isbn></ns:book>

However, if we call serializeAndConsume() first, and then call serialize(), we
get an exception. This is because once the serializeAndConsume() method is called,
the AXIOM tree will not be built, and the cache flag is reset. So the next time we try
to call the serialize method, we have nothing left to serialize and hence get
an exception.

String xmlStream = "<ns:book xmlns:ns=\"axis2\" type=\"web-services\
"><ns:name></ns:name><ns:isbn></ns:isbn></ns:book>";
//Create an input stream for the string
ByteArrayInputStream byteArrayInputStream = new ByteArrayInputStream(x
mlStream.getBytes());
//create a builder. Since we want the XML as a plain XML, we can just
use
//the plain OMBuilder
StAXBuilder builder = new StAXOMBuilder(byteArrayInputStream);
//return the root element.
OMElement root = builder.getDocumentElement();
root.serializeAndConsume(System.out);
root.serialize(System.out);

Advanced Operations with AXIOM
We know how to create and serialize AXIOM. But this is not sufficient for doing
advanced operations with Axis2 or AXIOM. For that, we need to learn the following:

Using OMNavigator for traversing
Xpath navigation
Accessing the pull parser
Using SOAP support

Using OMNavigator for Traversing
AXIOM provides a utility class in order to navigate the AXIOM structure. The
navigator provides an in-order traversal of the AXIOM tree up to the last-built node.
The Navigator has two states called the "navigable state" and the "completion state".
Since the navigator provides the navigation starting from an OMElement, it

•

•

•

•

Chapter 3

[41]

is deemed to have completed the navigation when the starting node is reached again.
This state is known as the completion state. Once the navigator has reached the
complete status, its navigation is done and it cannot proceed.

It is possible that the AXIOM tree does not get built completely when it is navigated.
The navigable status shows whether the tree structure is navigable. Once the
navigation is complete, we cannot navigate it further. However, it is possible for
a navigator to become non-navigable without being complete. The following code
sample shows how the navigator should be used and handled by using its states:

//Create a navigator
OMNavigator navigator = new OMNavigator(root);
OMNode node = null;
while (navigator.isNavigable()) {
node = navigator.next();
}

Xpath Navigation
AXIOM has Xpath navigation support through Jaxen. So, we can write an Xpath
query and invoke it in AXIOM. Let us write an Xpath query to get the 'isbn' number
from the book element that we have created. If we run the following sample, then we
will get "56789"as output in the console.

String xmlStream = "<book type=\"web-services\"><name></
 name><isbn>56789</isbn></book>";
ByteArrayInputStream byteArrayInputStream = new ByteArrayInputStream
 (xmlStream.getBytes());
StAXBuilder builder = new StAXOMBuilder(byteArrayInputStream);
OMElement root = builder.getDocumentElement();
AXIOMXPath xpath = new AXIOMXPath("/book/isbn[1]");
OMElement selectedNode = (OMElement) xpath.selectSingleNode(root);
System.out.println(selectedNode.getText());

Accessing the Pull-Parser
AXIOM is tightly integrated with StAX and the getXMLStreamReader() method
or getXMLStreamReaderWithoutCaching() method in the OMElement provides a
XMLStreamReader object. This XMLStreamReader instance has a special capability
of switching between the underlying stream and the AXIOM object tree, if the cache
setting is off. However, this functionality is not visible to the user.

AXIOM

[42]

AXIOM has the concept of caching, and is the actual cache of the events that are
being fired. However, the requester can choose to get the pull events from the
underlying stream, rather than from the AXIOM tree. This can be achieved by
getting the pull-parser with the cache off. If the pull parser was obtained without
switching off caching, the new events fired will be cached, and the AXIOM tree
will be updated. Thus, the returned pull parser will switch between the object
structure and the stream underneath. The users need not worry about the differences
caused by the switching. The exact pull stream that we have seen from the original
document would be produced even if the AXIOM tree was fully or partially built.
The getXMLStreamReaderWithoutCaching() method is very useful when the events
need to be handled in a pull-based manner without any intermediate models. This in
turn makes the operations faster and more efficient.

AXIOM and SOAP
We have already discussed that AXIOM was developed as an XML representation
mechanism in Axis2. As a SOAP processing framework, Axis2 needs to work with
SOAP. We know that SOAP is also XML, but has its own structure. So, it is easy if
we can get a SOAP level API from AXIOM. Therefore, AXIOM has in-built support
for SOAP representation and navigation. We can easily create SOAP 1.1 and 1.2
documents with AXIOM and navigate them. When we navigate SOAP, AXIOM
has inbuilt support for getting the SOAP header and SOAP body. Therefore, we do
not need to get an iterator and navigate. We can call the getHeader method and the
getBody method rather than the getChild method. The following code samples show
how we can create the SOAP 1.1 document and SOAP 1.2 document with AXIOM.

Creating a SOAP 1.1 Document

OMFactory factory = OMAbstractFactory.getOMFactory();
OMNamespace axis2 = factory.createOMNamespace("axis2", "ns");
OMElement root = factory.createOMElement("book", axis2);
OMAttribute type = factory.createOMAttribute("type",null,
 "web-services");
root.addAttribute(type);
OMElement name = factory.createOMElement("name", axis2);
OMElement isbn = factory.createOMElement("isbn", axis2);
root.addChild(name);
root.addChild(isbn);

SOAPFactory soapFactory = OMAbstractFactory.getSOAP11Factory();
//get the default envelope
SOAPEnvelope env = soapFactory.getDefaultEnvelope();
//add the created child
env.getBody().addChild(root);
System.out.println(env);

Chapter 3

[43]

From the preceding code, it is evident that we first create a book element as the body
of the SOAP message, and then we create the default SOAP 1.1 envelope and add the
created book element as the body.

Creating a SOAP 1.2 Document

Creating the SOAP 1.2 document is almost the same as before, except for the factory.
In the following sample, we need to use a 1.2 factory, instead of a 1.1 factory.

OMFactory factory = OMAbstractFactory.getOMFactory();
OMNamespace axis2 = factory.createOMNamespace("axis2", "ns");
OMElement root = factory.createOMElement("book", axis2);
OMAttribute type = factory.createOMAttribute("type",null,"web-
services");
root.addAttribute(type);
OMElement name = factory.createOMElement("name", axis2);
OMElement isbn = factory.createOMElement("isbn", axis2);
root.addChild(name);
root.addChild(isbn);

SOAPFactory soapFactory = OMAbstractFactory.getSOAP12Factory();
//get the default envelope
SOAPEnvelope env = soapFactory.getDefaultEnvelope();
//add the created child
env.getBody().addChild(root);
System.out.println(env);

Summary
In this chapter, we have learned how to create, serialize, and navigate an AXIOM
in a number of ways. We have also learned SOAP handling in AXIOM, which is an
important part when we consider AXIOM in Axis2.

Execution Chain
The fundamental goal of any given SOAP processing framework is to deliver an
incoming SOAP message to the target application. However, if we consider today's
Web Services or any other application, just delivering the message to the application
is not sufficient. We need to provide quality of service, such as reliability and
security. To provide these features, most SOAP processing frameworks have the
concept of pipes, where, any incoming or outgoing message goes through the pipe,
and the pipe gets divided into smaller pieces. Each piece is known as an interceptor.

Handler
If you have used any version of Apache Axis, then you will be familiar with the term
"Handler"—the Apache terminology for "message interceptor". In any messaging
system, the interceptor has its factual meaning in the context of messaging, where it
intercepts the flow of messaging and does whatever task it is assigned to do. In fact,
an interceptor is the smallest execution unit in a messaging system, and an Axis2
handler is also an interceptor.

Handlers in Axis are stateless, that is, they do not keep their pass execution states
in the memory. A handler can be considered as a logic invoker with the input
for the logic evaluation taken from the MessageContext (We will learn more
about MessageContext in Chapter 6.) A Handler has both read and write access
permissions to MessageContext (MC) or to an incoming SOAP message.

For continuity purposes, we can consider MessageContext as a property bag that
keeps incoming or outgoing messages (maybe both) and other required parameters.
It may also include properties to carry the message through the execution chain. On
the other hand, we can access the whole system including the system runtime, global
parameters, and property service operations via the MC.

Execution Chain

[46]

In most cases, a handler only touches the header block part of the SOAP message,
which will either read a header (or headers), add a header(s), or remove a header(s).
(This does not mean that the handler cannot touch the SOAP body, nor does it mean
that it is not going to touch the SOAP body.) During reading, if a header is targeted
to a handler and is not executing properly (the message might be faulty), then it
should throw an exception, and the next driver in the chain (in Axis2, it is the Axis
engine) would take the necessary action. A typical SOAP message with few headers
is shown in the figure given below:

Any handler in Axis2 has the capability to pause the message execution, which
means that the handler can terminate the message flow if it cannot continue. Reliable
messaging (RM) is a good example or use case for that scenario, when it needs to
pause the flow depending on some of the preconditions and the postconditions as
well and it works on a message sequence. If a service invocation consists of more
than one message, and if the second message comes before the first one, then the
RM handler will stop (or rather pause) the execution of the message invocation
corresponding to the second message until it gets the first one. And when it gets, the
first message is invoked, and thereafter it invokes or resumes the second message.

Writing a Simple Handler
Just learning the concepts will not help us in remembering what we have discussed.
For that, we need to write a handler and see how it works. Writing a handler in
Axis2 is very simple. If you want to write a handler, you either have to extend the
AbstractHandler class or implement the Handler interface.

Chapter 4

[47]

A simple handler that extends the AbstractHandler class will appear as follows:

public class SimpleHandler extends AbstractHandler
{

 public SimpleHandler()
 {
 }
 public InvocationResponse invoke(MessageContext msgContext)
throws AxisFault {
 //Write the processing logic here
 // DO something
 return InvocationResponse.CONTINUE;
 }
}

Note the return value of the invoke method. We can have the following three values
as the return value of the invoke method:

Continue: The handler thinks that the message is ready to go forward.
Suspend: The handler thinks that the message cannot be sent forward since
some conditions are not satisfied; so the execution is suspended.
Abort: The handler thinks that there is something wrong with the message,
and cannot therefore allow the message to go forward.

In most cases, handlers will return InvocationResponse.CONTINUE as the
return value.

When a message is received by the Axis engine, it calls the invoke method of each
of the handlers by passing the argument to the corresponding MessageContext.
As a result of this, we can implement all the processing logic inside that method.
A handler author has full access to the SOAP message, and also has the required
properties to process the message via the MessageContext. In addition, if the handler
is not satisfied with the invocation of some precondition, the invocation can be
paused as we have discussed earlier (Suspend).

If some handler suspends the execution, then it is its responsibility to store the
message context, and to forward the message when the conditions are satisfied. For
example, the RM handler performs in a similar manner.

•

•

•

Execution Chain

[48]

Phase
The concept of phase is introduced by Axis2, mainly to support the dynamic
ordering of handlers. A phase can be defined in a number of ways:

It can be considered a logical collection of handlers.
It can be considered a specific time interval in the message execution.
It can be considered a bucket into which to put a handler.
One can consider a phase as a handler too.

A flow or an execution chain can be considered as a collection of phases. Even
though it was mentioned earlier that an Axis engine calls the invoke method of a
handler, that is not totally correct. In fact, what the engine really does is call the
invoke method of each phase in a given flow, and then the phase will sequentially
invoke all the handlers in it (refer to the following figure). As we know, we can
extend AbstractHandler and create a new handler; in the same way one can extend
the Phase class and then create a new phase. But remember that we need not always
extend the Phase class to create a new phase. We can do it by just adding an entry
into axis2.xml (adding a phase to axis2.xml is explained in Chapter 6). A phase
has two important methods—precondition checking and postcondition checking.
Therefore, if we are writing a custom phase, we need to consider the methods that
have been mentioned. However, writing a phase is not a common case; you need to
know how to write a handler.

A phase is designed to support different phase rules. These rules include phaseFirst
as well as phaseLast. In a phase, there are reserved slots to hold both phaseFirst
handlers and phaseLast handlers. The rest of the handlers are in a different list. A
phase can, therefore, be graphically represented as follows:

•

•

•

•

Chapter 4

[49]

Once the engine calls the invoke method of the phase, it has the following
execution sequence:

First, check whether the precondition is satisfied.
Then check whether the phaseFirst handler is there. If it is present, then it
will be invoked.
Next, the rest of the handlers will be invoked, except for the
phaseLast handler.
If the phaseLast handler is there, then it will be invoked.
Finally, it will check whether the postcondition is satisfied so as to forward
the message.

Types of Phases
There are two types of phases defined in axis2.xml. There are no differences
between the ways the logic is implemented. However, the location of the phase
in the execution chain differs. The two types of phases are:

1.	 Global phase
2.	 Operation phase

Global Phase
A global phase is a phase that is invoked irrespective of the service. In simple terms,
whenever a message comes into the system, it will go through the global phase.
The whole idea of defining a global phase and an operation phase in axis2.xml is
to provide an easy path for module authors. In Chapter 8, we will see how module
authors create their modules along with the module descriptor file, and how the
module descriptor makes assumptions about the different phases that are defined in
the axis2.xml file.

•

•

•

•

•

Execution Chain

[50]

If we consider the default axis2.xml file which is present in our download
directory, we will observe that it has a set of global as well as operation phases. The
splitting point of the global phase and operation phase is the Dispatch phase. All the
phases up to and including Dispatch phase are considered global phases, whereas
the rest are considered operation phases.

The phase section of the default axis2.xml file is given below. It is a bit complicated.
But all you need to do is focus on the keyword 'phase'.

<phaseOrder type="InFlow">
 <!-- System predefined phases -->
 <phase name="Transport">
 <handler name="RequestURIBasedDispatcher"
 class="org.apache.axis2.engine.
RequestURIBasedDispatcher">
 <order phase="Transport"/>
 </handler>
 <handler name="SOAPActionBasedDispatcher"
 class="org.apache.axis2.engine.
SOAPActionBasedDispatcher">
 <order phase="Transport"/>
 </handler>
 </phase>
 <phase name="Security"/>
 <phase name="PreDispatch"/>
 <phase name="Dispatch" class="org.apache.axis2.engine.
DispatchPhase">
 <handler name="RequestURIBasedDispatcher"
 class="org.apache.axis2.engine.
RequestURIBasedDispatcher"/>

 <handler name="SOAPActionBasedDispatcher"
 class="org.apache.axis2.engine.
SOAPActionBasedDispatcher"/>

 <handler name="AddressingBasedDispatcher"
 class="org.apache.axis2.engine.
AddressingBasedDispatcher"/>
 <handler name="RequestURIOperationDispatcher"
 class="org.apache.axis2.engine.
RequestURIOperationDispatcher"/>

 <handler name="SOAPMessageBodyBasedDispatcher"
 class="org.apache.axis2.engine.
SOAPMessageBodyBasedDispatcher"/>

 <handler name="HTTPLocationBasedDispatcher"
 class="org.apache.axis2.engine.
HTTPLocationBasedDispatcher"/>
 </phase>
 <!-- System predefined phases -->

Chapter 4

[51]

 <!-- After Postdispatch phase module author or service
 author can add any phase he or she wants -->
 <phase name="OperationInPhase"/>
 <phase name="soapmonitorPhase"/>
 </phaseOrder>

In the previous code, 'Transport', 'Security', 'PreDispatch', and 'Dispatch' are
the global phases while 'OperationInPhase' and 'soapmonitorPhase' are the
operation-specific phases.

All the global phases have semantic meanings from their names as well. Transport
phase consists of a handler, which performs the tasks that are dependent on the type
of transport. In the Security phase, WS-Security implementation will include their
handlers. As the name implies, PreDispatch phase is the phase consisting of a set
of handlers that performs the work needed for dispatching. Handlers such as
WS-Addressing, are always included in this phase. Dispatch phase is the phase that
does the dispatching by simply finding the corresponding service as well as the
operation for the incoming message. As a result, it is evident that Dispatch phase
consists of dispatching handlers.

Operation Phase
For instance, suppose that we have a handler, that we do not have to run for every
message coming to the system, rather we need to run that for a selected set of
operations. This is where the operation phase comes into the picture.

Phase Rules
The main idea of the phase rule is to correctly locate a handler, relative to the one
that is inside a phase, either at deployment time or at run time. In Axis1, we did not
have the concept of phases or phase rules. What it had was a global configuration file
wherein we defined our handlers. But it had a number of limitations such as loosing
the dynamic nature of the handler chain. One aspect of phase rule is addressing the
issues of dynamic execution chain-building capability.

Characterizing a phase rule can be based on one or more of the following properties:

Phase name: Name of the phase where the handler must be placed.
Phase first (phaseFirst): First handler of the phase.
Phase Last (phaseLast): Last handler of the phase.
Before (before): should be positioned before a given handler.
After (after): should be positioned after a given handler.
Before and after: should be placed between two given handlers.

•

•

•

•

•

•

Execution Chain

[52]

Phase Name
"Phase" is a compulsory attribute for any phase rule, which specifies the phase in
which the handler must fit. For validity, the name of the phase should be either in
the global phase, or in the operational phase, and should be defined in axis2.xml.

phaseFirst
If we want a handler to be invoked as the first handler in a given phase, irrespective
of the other handlers in the phase, then we need to set the phaseFirst attribute to
"true". A handler, which has phaseFirst as the only phase rule, is shown below:

<handler name="simple_Handler " class="org.apache.axis.handlers.
SimpleHandler ">
 <order phase="userphase1" phaseFirst="true"/>
</handler>

phaseLast
If we want a handler to run last in a given phase irrespective of the other handlers,
then the phaseLast attribute should be set to "true". Refer to the following code:

<handler name="simple_Handler" class="org.apache.axis.handlers.
SimpleHandler ">
 <order phase="userphase1" phaseLast="true"/>
</handler>

If there is a phase rule with both phaseFirst and phaseLast attributes set to
true, then that phase cannot have any other handlers. As a result, the phase has only
one handler.

before
There may be situations where a handler should always run before some other
handler, irrespective of its exact location. A real-time use case for this can be a
security handler, which needs to run before the RM handler. Refer to the following
code
to understand the logic. Here, the value of the 'before' attribute is the name of the
handler before which this handler must run.

<handler name="simple_Handler2 " class="org.apache.axis.handlers.
SimpleHandler2 ">
 <order phase="userphase1" before=" simple_Handler "/>
</handler>

Chapter 4

[53]

Axis2 phase rule processing logic is implemented in such a way that if the handler
referred to by the attribute 'before' is not available in the phase but only at the time
the rule is being processed, then it just ignores the rule and the handler is placed
immediately after the phaseFirst handler. (If it is available, it places the handler
somewhere in the phase.)

after
As before, if a handler always runs after some other handler, then the phase rule can
be written using the attribute 'after', and the value of 'after' attribute is the name of
the handler after which this handler must run.

<handler name="simple_Handler3 " class="org.apache.axis.handlers.
SimpleHandler3 ">
 <order phase="userphase1" after=" simple_Handler2"/>
</handler>

after and before
If a handler needs to be run between two different handlers, then the phase rule can
be written using both before and after attributes. The values of both before and
after attributes are the names of the relevant handlers. Here is the appropriate way
of writing a phase rule.

<handler name="simple_Handler4" class="org.apache.axis.handlers.
SimpleHandler4">
 <order phase="userphase1" after=" simple_Handler1"
before=" simple_Handler2"/>
</handler>

Invalid Phase Rules
The validity of a phase rule is an important factor in Axis2. There can be many ways
to get the same handler order by using different kinds of phase rules. But when
writing a phase rule, it is required to check whether the rule is a valid rule. There are
many ways in which a phase rule can become an invalid rule. Some of them are:

1.	 If there is a phase rule for a handler with either the phaseFirst or the
phaseLast attribute set to true, then it can have neither 'before' nor 'after'
appearing in the phase rule. If they do, then the rule is invalid.

2.	 If there is a phase rule for a handler with both phaseFirst and phaseLast set
to true, then that particular phase cannot have more than one handler. If
someone tries to write a phase rule that inserts a handler into the same phase,
then the second phase rule is invalid.

Execution Chain

[54]

3.	 There cannot be two handlers in one phase with their phaseFirst attribute set
to true.

4.	 There cannot be two handlers in one phase with their phaseLast attribute set
to true.

5.	 If the rule is such that the attribute 'before' refers to a phaseFirst handler,
then the rule is invalid.

6.	 If the rule is such that the attribute 'after' refers to a phaseLast handler, then
the rule is invalid.

 <handler name="simple_HandlerError " class="org.apache.axis.
 handlers.SimpleHandlerError ">
 <order phase="userphase1" before=" simple_Handler"
 phaseFirst="true"/>
 </handler>

Phase rules are defined on a per-handler basis, and any handler in the system must
fit into a phase in the system.

Flow
Flow is simply a collection of phases. The order of phases inside a flow is defined in
axis2.xml. Since phase is a logical collection (which is in fact a virtual concept), a
flow can be assumed to be the execution chain (collection of handlers).

The following are the four types of flows in Axis2:

1.	 InFlow
2.	 OutFlow
3.	 InFaultFlow
4.	 OutFaultFlow

InFlow: When a message comes in (request message), it has to go via the InFlow.
This in turn invokes all the handlers in the InFlow. InFlow is somewhat different
from OutFlow. The Inflow consist of two parts. The first part starts from the
Transport Receiver, and ends at Dispatcher (up to and including Dispatch phase).
The second part will be there only if the corresponding service and operations are
found at the end of Dispatch phase. Therefore, the second part of the flow is the
InFlow of the corresponding operation for the incoming message. So the InFlow
consists of global as well as operation parts.

InFaultFlow: This flow is invoked if the incoming request is faulty (request with
HTTP status code 500).

Chapter 4

[55]

OutFlow: When a message is moving out from the server (say a response), the
OutFlow is invoked. As a result, the outgoing message is always bound to an
operation, and there is nothing similar to dispatching in the out path.

OutFaultFlow: If something goes wrong in the out path, then the OutFaultFlow
is invoked.

Module Engagement and Dynamic
Execution Chain
In Chapter 8, we will learn that an Axis2 module can be considered as a collection
of handlers. So, by engaging a module either globally to a service or to an operation,
handlers will be placed in the corresponding phases depending on the phase rules.
If a module is engaged globally, then that will affect all the services in the system,
and there is a probability of changing both the global and operations flows (each of
the operations in the service). And if a module is engaged to a service, then the flows
belonging to all the operations in that particular service will be changed. If a module
is engaged to an operation, then each flow in that operation may be changed.

Execution Chain

[56]

The only way of changing a flow is by adding a handler (s) to a phase in the
flow. Therefore, module engagement will result in a change in the handler chain
dynamically. A module can be engaged dynamically (at run time) or statically (at
deployment time). If we want to engage a module statically, then we need to specify
it in the description file. (If it is to a service or to an operation, then it must be in the
services.xml file, and if it is globally, then it must be specified in the axis2.xml file).

Special Handlers in the Chain
When we consider the execution chain we can find the following four types of special
handlers in the execution chain:

1.	 TransportReceiver
2.	 Dispatcher(s)
3.	 MessageReceiver
4.	 TransportSender

TransportReceiver
Whenever a message comes into the system, it will first reach a transport receiver,
which can therefore be considered as an agent that is waiting to accept incoming
message. (In the case of the Application server, the transport receiver could be
a servlet). Therefore, the InFlow of the execution chain always starts with the
transport receiver.

Dispatchers
As we have discussed earlier, one of the fundamental goals of SOAP processing
frameworks is to deliver an incoming message in the targeted application. The
process of finding the correct targeted application is called dispatching. In Axis2,
dispatching takes place in the middle of the incoming execution chain, where
dispatchers are the handlers in the chain. When we consider dispatching, the
following ways can be adopted:

Using Transport headers and transport-level data
Using WS-Addressing information
Using the incoming SOAP message

To cater to the above mentioned types of dispatching, Axis2 has a set of default
dispatchers and we can change the order of their execution using axis2.xml. If we
look at the InFlow element that we discussed in the global phase section, we will find
the set of available dispatchers in the Dispatch phase:

•

•

•

Chapter 4

[57]

RequestURIBasedDispatcher: Tries to find the service and operation using
the transport URI.
SOAPActionBasedDispatcher: Tries to find the operation using the
SOAP action.
AddressingBasedDispatcher: Uses addressing information in the WS-A
header to find the service and operation.
SOAPMessageBodyBasedDispatcher: Uses and navigates a SOAP message,
especially the body, to find the operation.
HTTPLocationBasedDispatcher: Is used to dispatch WSDL 2.0-related
SOAP messages.

MessageReceiver
The MessageReceiver, itself, is a handler. The only difference is that Axis2 treats
that handler in a manner different from the others. If the message has gone through
the execution chain without having any problem (no exceptions have occurred in
the middle of the chain), then the engine will hand over the message to the message
receiver to do the business logic invocation. The figure below shows the location of
the MessageReceiver in the execution chain:

On the other hand, it is the MessageReceiver that directly interacts with both the actual
service implementation class and the Axis Engine. (There may be instances where
the service itself is a MessageReceiver.) In Axis 1.x, we have the concept of the "pivot
point" where a request path and response path meet together, and where actual service
invocation takes place. As mentioned earlier, the MessageReceiver is the end of the
inflow that interacts with the service implementation class. Therefore, axis2 has got
nothing to do with it once it hands over the message to the MessageReceiver.

The Axis2 distribution includes a set of message receivers to support commonly used
MEPs (In-Out and In-only) as well as to support the JavaBean case.

RawXMLINOnlyMessageReceiver: XML in-only scenario
RawXMLINOutMessageReceiver: XML in-out scenario
RPCInOnlyMessageReceiver: Java bean in-only scenario
RPCMessageReceiver: Java bean in-out scenario

•

•

•

•

•

•

•

•

•

Execution Chain

[58]

TransportSender
As we discussed earlier, the transport receiver is the starting handler of the inflow.
However, it is the transport sender that runs in the outFlow as the last handler of the
outflow. We can have different types of transport senders for different transports.
For example, Axis2 has transport senders for HTTP, SMTP, TCP, and so on. When
we send the message using HTTP transport, the HTTP sender is invoked. On the
other hand, if we are sending the message via SMTP, then the SMTP transport sender
is invoked.

Summary
Axis2 is good enough to provide Web Service interaction with a dynamic and flexible
execution framework. Flexibility is achieved using the concept of phases and phase
rules, whereas the dynamic nature of the execution chain has been achieved by run-
time module engagement.

Hacking Deployment
It is not just important to have features, but we need to have features that are user
friendly. In the meantime, hardware resources are no longer a problem for users.
The only concern is that it must not be time-consuming. In the previous versions
of Apache Axis, user-friendliness was not given high priority, as they were mainly
used to prove the Web Service concepts. Therefore, in Axis 1.x, the user has to invoke
the admin client manually and update the server classpath. Then, the user needs to
restart the server in order to apply the changes. This burdensome deployment model
was a definite barrier for beginners. Therefore, Axis2 was engineered to overcome
this drawback, and provide a flexible, user-friendly, and easily configurable
deployment model.

What's New in Axis2 Deployment?
The Axis2 deployment model has introduced a number of new features the into
Apache Web Service stack, some of which are already familiar from the Web Service
paradigm. However, they are new compared to Apache Axis 1.x. The following are
the key features of its deployment model:

J2EE-like deployment mechanism (archive based)
Hot deployment and Hot update
Repository
Change in the way of deploying handlers (Modules)
New deployment descriptors
Available deployment options

•

•

•

•

•

•

Hacking Deployment

[60]

J2EE-like Deployment Mechanism
In any J2EE application server, we can deploy an application as a self-contained
package, where we can bundle all our resources, configuration files, and binary files
together into one file and deploy it. As this is clearly useful, Axis2 has introduced the
same mechanism to deploy services (and modules) in a very convenient manner.

Let us think of a scenario wherein we have a service with several third-party
dependencies, and a number of property files, but do not have a J2EE-like
deployment mechanism. Then, what we have to do is to put all those dependent JAR
files and property files into the application classpath. That would be double, if we
have two servers. But what will happen if we are in a clustering environment with
hundreds of replicas? Practically, it will not be possible to go and add dependent
JAR files and other resources into the classpath of each and every replica. But,
when we have a J2EE-like deployment mechanism, we do not need to worry about
such issues. We can just go and drop the self-contained package, in this case, the
service archive file, into the replicas. This definitely reduces our work, and prevents
common human errors as well.

The internal structure of an Axis2 self-contained package (or archive file) is shown
in the following figure. Both service archives and module archives have an almost
identical structure with a few minor disparities.

1.	 In the case of an Axis service archive, the descriptor.xml file gets converted
to services.xml, and in the other case, it gets converted to module.xml file.

2.	 The file extension for an Axis2 service archive is ".aar" and the file extension
for a module archive is ".mar" (a service archive or module archive is just a
ZIP file with a change in the file extension to either .aar or .mar).

As mentioned earlier, the descriptor.xml file would be the services.xml file for a
service. So in the service archive file, we can find a file named services.xml inside
the META-INF directory. On the other hand, the module archive file will have a file
named module.xml inside the META-INF directory.

Chapter 5

[61]

For a service archive:

descriptor.xml ---> services.xml

For a module archive:

descriptor.xml ---> module.xml

Hot Deployment and Hot Update
Availability is a big concern when it comes to enterprise-level applications. Even a
short amount of downtime can be highly detrimental; so restarting a server is not a
good option. We need to update and change the system without shutting it down.
This is how hot deployment and hot update come into the picture. It is clear that
when our application has these features, then we do not need to shut down the
system for updating.

The concept of hot deployment and hot update is not a new terminology in technical
paradigms, although it is a new feature in the Apache Axis Web Service stack.

Hot deployment: This is the ability to deploy new services while the system
is up and running. As an example, let's say that we have two services,
'service1' and 'service2' that are up and running, and we deploy a new
service called 'service3' without shutting the system down. Then, the system
makes 'service3' a running service. This scenario is called hot deployment.
As a system administrator, if we do not like the hot deployment of a service,
then we can turn that off easily by editing the Axis2 global configuration file
called axis2.xml, and changing the global configuration parameter
as follows:

 <parameter name="hotdeployment">false</parameter>

Hot update: This is the ability to make changes to an existing Web Service,
without shutting down the system. It is an important feature and is required
in a testing environment. However, it is not advisable to use hot update in a
real-time system, because a hot update could result in a system that is in an
unknown state.
Additionally, there is a possibility of loosing the existing service data of that
service. To prevent this, Axis2 comes with the hot update parameter set to
FALSE, by default, and if we want to use this feature, we need to change the
configuration parameter as follows:

 <parameter name="hotupdate">true</parameter>

•

•

Hacking Deployment

[62]

Repository
The Axis2 repository is a directory in the file system with a specific structure. On the
other hand, the repository can be located locally or in a remote machine. The concept
of the repository was introduced to support archive-based and hot-deployed features
in a very convenient manner.

The repository directory consists of two main subdirectories called services and
modules. We have an optional subdirectory called lib as well. If we want to deploy
a service, then we need to drop the service archive file into the services directory.
Similarly, if we want to deploy a module, then we need to drop a module archive file
into the modules directory. The idea behind the lib directory is to place the third-party
libraries that are going to be shared across both services and modules in it.

If one or more modules in the modules directory have to share some resources,
then they have to add those resources into the lib directory, inside the modules
directory. Similarly, if a number of services from the services directory want to
share some resources, then they need to place them in the lib directory, inside the
services directory.

Change in the Way of Deploying Handlers
(Modules)
The concept of service extension is a new feature of the Apache Axis paradigm, but
in Axis 1.x, the developers had to work hard to achieve the same goal. So the idea
is to extend the core functionality of the system and to provide quality of service.
In the case of Axis 1.x, if we have to extend the core functionality, then we have to
write a handler (the smallest unit in the execution chain), and also change the global
configuration files to add the handler, and finally restart the system.

Chapter 5

[63]

A module does the same amount of work, but reduces the amount of work we
need to do. In the meantime, a module can have one or more handlers, and these
handlers should have only a module descriptor, "module.xml". Most of the time, a
module is an implementation of a specific WS specification. As an example, the Axis2
addressing module is an implementation of WS-Addressing, and Sandesha is an
implementation of WS-Reliable Messaging.

As mentioned earlier, we can deploy a module as an archive file. The structure of the
module archive file is shown in the figure below:

New Deployment Descriptors
The flexibility and extensibility of Axis2 is focused on its deployment descriptors
as well, rather than just a configuration file. Axis2 has different configuration files
for different levels of configuration. Let's say we want to have different types of
configuration for different levels. Having multiple configuration files for different
levels will solve the problem for us. There are three types of descriptors or
configuration files in Axis2. They are as follows:

Global Descriptor (axis2.xml)
Service Descriptor (services.xml)
Module Descriptor (module.xml)

•

•

•

Hacking Deployment

[64]

Global Descriptor (axis2.xml)
As we have already mentioned, all the configurations in Axis2 can be specified using
XML descriptors. This gives us more flexibility in extending and changing Axis2.
We are not required to go and change the code to have different configurations. The
case is similar with core functionality. If you consider the global configuration file of
Axis2, it has minimal configuration that is required to run Axis2. It includes:

Configuration Parameters
Transport Senders
Transport Listeners
Execution chains and Phases
Default Dispatchers
Default Message Receivers
Default client-side configurations
Global Modules
WS-Policy (Global-level policy)

Some of the above terms may not be familiar to you, but you need not worry. We
will be learning about these most commonly used terms in the forthcoming chapters.
Axis2 has axis2.xml by default, and it has the minimum configuration that is
required to start Axis2. Note that if we make any changes to axis2.xml, then we
have to restart the system in order to view those changes.

Service Descriptor (services.xml)
As we discussed in the previous section, axis2.xml is used to specify the
configuration that affects the whole system. However, services.xml is used
to configure a particular service or a service group. In the next section, we will
have a look at some of the ways that are available for deploying services in Axis2.
The archive-based deployment mechanism and the directory-based deployment
mechanism are the two most commonly used techniques. In either of the two cases,
services.xml is required for the service to be a valid service. The service descriptor
is used to specify a number of configurations. Some of them are optional.

Name of the service
Target namespaces of the service
Session Scope
Exposed Transports
Service-level and operation-level parameters

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 5

[65]

Message receivers
Service-level modules
Operations, exposed operations as well as non-exposed operations
Bean Mapping
Object Suppliers
Service-level policy and Operation-level policy

We will learn more about each of these configurations in Chapter 7. We will also
learn to write and create services.

Module Descriptor (module.xml)
As the name implies, module.xml is used to configure Axis2 modules. So, it has
different types of configurations. These include:

Handlers and their phase rules
Module Parameters
Endpoints
WS-Policy

We will learn more about Axis2 modules in Chapter 8. We will also learn to write
the modules.

Available Deployment Options
In the initial stages of Axis2, we only had archive-based deployment, but later, a
number of deployment options made service authors' jobs easier. Axis2 has the
following deployment options:

Archive-based deployment
Directory-based deployment
Deploying a service programmatically using archive files
Programmatically making a Java class into a Web Service
POJO (Plain Old Java Object) deployment support along with annotation
Deploying and starting Axis2 in one line

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Hacking Deployment

[66]

Archive-Based Deployment
The most common and recommended approach for deploying a service in Axis2 is
archive-based deployment. In archive-based deployment, we get many configuration
options and more flexibility as compared to the other types. In Chapter 7, we will
discuss more about archive-based deployment, along with examples.

Directory-Based Deployment
Directory-based deployment is almost identical to archive-based deployment. The
only difference is that rather than creating an archive file, we can deploy service as a
directory. The structure of the directory is identical to that of an archive file.

Deploying a Service Programmatically
Deploying a service programmatically using an archive file is not really a user
requirement; it is rather the module author's requirement, where some module needs
to deploy a Web Service at run time in order to provide the full functionality of that
particular module.

To create a Service (ServiceGroup) programmatically, we need to have a file
object representing the service archive file, and a pointer to an Axis2 runtime or
ConfigurationContext. Once we have these two, we can create a Web Service as
shown in the code below. The advantage of this approach is that we do not need
to copy our service archive file into the repository. It is only at the runtime that the
service is visible.

//Need to have a reference to ConfigurationContext
ConfigurationContext configContext = getConfigurationContext();
File serviceArchiveFile = new File("Location of the file");
//Now let's create AxisServiceGroup which contains the service we want
//to have
AxisServiceGroup serviceGroup = DeploymentEngine.loadServiceGroup(
 serviceArchiveFile,
 configContext);

Here getConfigurationContext() is to get the ConfigurationContext at any
available location. We do not have such a method in Axis2, but we can write one to
get the ConfigurationContext.

Once we have created a service, the next step is to add the service to the system, and
we can do that in the following manner:

//Getting a pointer to AxisConfiguration
AxisConfiguration axiConfiguration = configContext.
getAxisConfiguration();
//Adding the created service
axiConfiguration.addServiceGroup(serviceGroup);

Chapter 5

[67]

POJO Deployment
To continue the discussion on other deployment options, we first need to create a Java
class, and then we need to expose a service. Assume that we have a Web Service with
two methods, "sayHello" and "add". The service Java class will appear as follows:

public class MyService {

 public String sayHello(String name) {
 return "Hello " + name;
 }

 public int add(int a, int b) {
 return a + b;
 }
}

Making a Java class into a Web Service is a very handy feature in Axis2, and it is very
useful while debugging in developing Web Services. In this case, we just need to
know about the archive file concept, services.xml; all we need is to have a pointer
to AxisConfiguration. Then, we can make a Web Service by using the above Java
class as follows:

//Need to have a pointer to AxisConfiguration
AxisConfiguration axiConfiguration = getAxisConfiguration();
//Creating a service using java class
AxisService service = AxisService.createService(
 MyService.class.getName(),
 axiConfiguration);
// Adding the created Service in to AxisConfiguration
axiConfiguration.addService(service);

The above deployment mechanism can also be considered as POJO deployment,
where we make the POJO into a Web Service. However, we can deploy the service as
shown above, if and only if we have a pointer to an AxisConfiguration.

Therefore, in order to use the above mechanism, we need to have
AxisConfiguration around, otherwise we cannot use the above mechanism. In the
instances where we do not have a way of accessing AxisConfiguration, we have
to find another way of achieving our goal. Here, another type of POJO deployment
mechanism can help us. We can deploy .class files into a directory called "pojo", in
the Axis2 repository. Then Axis2 will process the .class file and make it into a Web
Service for us.

Hacking Deployment

[68]

Now, let us compile our Java class in order to get the MyService.class file. We first
need to create a directory inside the repository (the repository directory inside the
place where we unpack the Axis2 binary distribution) called "pojo", and it should
be on the same level as the services and modules directories. Now, we have the
repository structure as follows:

Axis2-1.2
 -repository
 -services
 -modules
 -pojo

Let's drop the MyService.class file into the "pojo" directory. If the server is not
running, we need to start Axis2 and type the following URL in the browser and see
the result.

http://localhost:8080/service

We will see the following:

This gives us a hint that our service is up and running. Now, let us try to invoke the
service and see whether it is working. Since we have not learned about the Axis2
client programming model yet, let us try to invoke the service by using the "REST"
method. Type the following URL in the browser and observe the output:

http://localhost:8080/axis2/services/MyService/sayHello?name=Axis2

We will see the following:

<ns:sayHelloResponse>
 <return>Hello Axis2</return>
</ns:sayHelloResponse>

Chapter 5

[69]

This implies that the service has been invoked. Now, let us try to invoke the
add method.

http://localhost:8080/axis2/services/MyService/add?a=10&b=15

<ns:addResponse>
 <return>25</return>
</ns:addResponse>

This is exactly the sum of the above two numbers. Now, we are sure that we have
exposed and invoked our Java class as a Web Service.

If we want to test this with Axis2 web distribution, then we can do it by copying the
MyService.class file into:

TOMCAT_HOME/webapps/axis2/WEB-INF/pojo

Then, we need to follow the above steps and observe the output.

Deploying and Running a Service in One Line
Among all the previous deployment options, this option can be considered the most
convenient way of deploying a service and starting the server. We require neither a
repository, nor services.xml. The only thing we need to have is an Axis2 library
file (axis2-1.3.jar) and its dependent libraries. Then, we can deploy and start the
Axis2 server as shown below. This way of deploying and running the server is very
useful when we debug and develop a service.

new AxisServer().deployService(MyService.class.getName());

When we start the AxisServer, it will start up the SimpleHttpServer on the port
specified in the Axis2 default configuration file, which is port 6060.

So now, if you type http://localhost:6060, we will see the following:

Now, if we run the following URLs in the browser, then we will get the same result
as above.

http://localhost:6060/axis2/services/MyService/sayHello?name=Axis2

http://localhost:6060/axis2/services/MyService/add?a=10&b=15

Summary
In this chapter, we had a look at the working of Axis2 deployment. We also had a look
at the available types of deployment descriptors, and their structures. At the end of the
chapter, we learned about the available deployment options in Axis2. The next step
would involve creating few more services and seeing the result.

Information Model
Service-Oriented Architecture (SOA) has gained a fair amount of recognition in
today's information technology industry. However, it is not only the world of
computing that is moving its applications onto the SOA platform. By moving into the
Web Services field, or by providing functionality in a Web Service-oriented manner,
firms gain a number of benefits such as interoperability, flexibility, and extensibility.

When we consider any type of application, there is a set of data associated with that
application, which could be either static or dynamic. And the application would
require the ability to support processing both these types of data while using a Web
Service framework. Currently, as there are a number of Web Service frameworks
that can handle data processing in different manners, this requirement can be met.
Especially, in Axis2, there exist two types of object hierarchies to support static as
well as dynamic data.

Introduction
In Chapter 2, we discussed how Axis2 architecture maintains logic and data
separately. Having such a segregation makes the system more flexible and
extensible. Moreover, Axis2 also has two different object hierarchies to keep the static
data and run-time data separately. In this chapter, we will discuss those two types of
object hierarchies with an example showing how we can create and populate them.

Axis2 Static Data
Consider an application that has configuration options. It is obvious that there
should be a mechanism to store and persist either the data or the configuration
values that will be used to configure the system. There can be some other ways of
representing these data at run time. Consider a situation where we do not have a
mechanism to store configuration data at run time. Then, we will have to read

Information Model

[72]

the configuration files to retrieve the data, and such a mechanism often results in
performance issues. Performance is of major concern when it comes to Web Services.
Therefore, loading configuration data at run time from the secondary storage
whenever required is not a good option. It would be better to keep such data in the
memory, and ready to use whenever required. On the other hand, if we have the
entire configuration data in one large object, then that can add to the performance
overhead. To address the problem in a more efficient manner, Axis2 has an object
hierarchy to store the configuration data. Some of the objects in the hierarchy will
be created at deployment time and some at run time, depending on the deployment
options employed. Now let us discuss the different types of objects in this hierarchy,
and try to understand how and when they are created.

Axis2 has three types of configuration files or deployment descriptors to configure
the object hierarchy. The three types of configuration files are as follows:

Global-level configuration file (axis2.xml)
Service-level configuration file (services.xml)
Module or service extension configuration file (module.xml)

The global configuration file is known as axis2.xml and it contains all the bare
minimum configuration data that are needed to start an Axis2 server. Meanwhile,
we can edit the axis2.xml file to suit our requirements and start Axis2 by using the
edited file. We can conclude that a framework will be required for the different types
of configuration data, such as the default SOAP version to be used, default HTTP
version, and so on. Being a very configurable Web Service framework, the above
statement holds true for Axis2. A typical axis2.xml file which can be used to run
Axis2 has the following set of configuration options:

Deployment configuration data
Transport Senders
Transport Receivers
Execution Chains
Phases
Parameters
Message formatters and Message builders

We have already discussed some of the above terms, and will discuss more about
them in detail, in this chapter.

•

•

•

•

•

•

•

•

•

•

Chapter 6

[73]

The above figure shows the relationship between various types of descriptions or
metadata in Axis2. As we can seen in the above figure, the top-most component in
the hierarchy is AxisConfiguration, which keeps track of all the configuration data
either directly or indirectly. It is observed that there are three major types of objects.
Firstly, AxisModule, which originates from a descriptor file called "module.xml", so
that when we deploy a module in Axis2, there will be a new AxisModule object to
keep track of that particular module's configuration data. Secondly, the middle object
hierarchy is created when we deploy a service in Axis2. Finally, there are transports
and other data, which are read directly from "axis2.xml".

AxisConfiguration
AxisConfiguration is the top-most component of the static data hierarchy. Although
we call them static data, there are instances where we can change those data at run
time as well. However, it is not something which is done very often. The whole
AxisConfiguration object is effectively a collection of data coming from axis2.xml,
a set of module.xml files, and a set of services.xml files. There are many ways
to create AxisConfiguration as well. One could create an AxisConfiguration either
by using a local file system, a remote repository, or by using a database. We will
discuss these options in Chapter 12. In this chapter, we will focus on how to create an
AxisConfiguration with the use of a default axis2.xml file from the local file system.
A typical axis2.xml file which has the minimum configuration data to start an Axis2
server is shown below:

<axisconfig name="AxisJava2.0">
 <parameter name="name">value</parameter>
 <messageReceivers>
 <messageReceiver mep="MPE"

class="org.apache.axis2.receivers.RawXMLINOnlyMessageReceiver"/>
 </messageReceivers>

Information Model

[74]

 <messageFormatters>
 <messageFormatter contentType="application/x-www-
 form-urlencoded"
class="org.apache.axis2.transport.http.XFormURLEncodedFormatter"/>
 </messageFormatters>
 <messageBuilders>
 <messageBuilder contentType="application/xml"0

class="org.apache.axis2.builder.ApplicationXMLBuilder"/>
 </messageBuilders>
 <transportReceiver name="http"

class="org.apache.axis2.transport.http.SimpleHTTPServer">
 <parameter name="port">6060</parameter>
 </transportReceiver>
 <transportSender name="http"

class="org.apache.axis2.transport.http.CommonsHTTPTransportSender">
 <parameter name="PROTOCOL">HTTP/1.1</parameter>
 <parameter name="Transfer-Encoding">chunked</parameter>
 </transportSender>
 <phaseOrder type="InFlow">
 <phase name="Transport">
 <handler name="RequestURIBasedDispatcher"
 class="o.a.a.d.RequestURIBasedDispatcher">
 <order phase="Transport"/>
 </handler>
 </phase>
 <phase name="Security"/>
 </phaseOrder>
 <phaseOrder type="OutFlow">
 <phase name="OperationOutPhase"/>
 </phaseOrder>
 <phaseOrder type="InFaultFlow">
 <phase name="PreDispatch"/>
 </phaseOrder>
 <phaseOrder type="OutFaultFlow">
 <phase name="OperationOutFaultPhase"/>
 </phaseOrd���er>
</axisconfig>

Chapter 6

[75]

Parameters
As you can see opposite, the axis2.xml file has parameters, and they can be defined
at different levels as well. Here, we have parameters at the top-level as well as inside
transports. The main use of a parameter is to configure the system and to provide
the configuration data required at run time. For example, if we need to log some
request to a particular location, then that location can be provided with the use of a
parameter. Parameters are designed to store primitive data types (string, int, double,
OMelement, and so on), but not any other type of objects. Even though storing object
types inside a parameter is not invalid, it is not a correct method to follow when it
comes to clustered applications (due to serialization issues).

Each parameter has an optional attribute called "locked" as shown below:

<parameter name="name" locked="true/false"> value </parameter>

The idea of a "locked" attribute is to provide a control mechanism in order to make
sure that none of the child nodes overrides that parameter. Let us say, we have a
parameter as the immediate child of axis2.xml, as shown below:

<axisconfig name="AxisJava2.0">
 <parameter name="port" locked="true">6060</parameter>
</axisconfig>

This will ensure that we have a unique parameter named "port", as in the code
below. The case would be similar for any child node. Apart from that, we cannot
have the parameter with the name "port" in either of the two descriptors (services.
xml and module.xml).

<axisconfig name="AxisJava2.0">
 <parameter name="port" locked="true">6060</parameter>
 <transportReceiver name="http"

class="org.apache.axis2.transport.http.SimpleHTTPServer">
 <parameter name="port">6060</parameter>
 </transportReceiver>
</axisconfig>

There is a scope associated with the parameter as well. A parameter defined in
axis2.xml as an immediate child can be accessed by any of the descriptors in
the system. Whereas, if we define a parameter inside a child node, for example
transportSender, then that parameter can be accessed only inside that particular
child, in this case, that specific transportSender.

While accessing a parameter, Axis2 first checks whether the parameter is defined in the
current description. If not, it checks its immediate parent for the parameter. If found,
the parameter is returned, otherwise, the parent's parent is checked, and so on. In this
manner, it searches the hierarchy when a request for a parameter is made.

Information Model

[76]

MessageFormatters and MessageBuilders
We know that the content-type header is used to specify the type of data in the
message body, and depending on the content type, the wire format varies. Therefore,
we need to have a mechanism to format the message depending on content type.
We know that any kind of message is represented in Axis2 using AXIOM, and
when we serialize the message, it needs to be formatted based on content type.
MessageFormatters exist to do that job for us. We can specify MessageFormatters
along with the content type in axis2.xml. On the other hand, a message coming into
Axis2 may or may not be XML, but for it to go though Axis2, an AXIOM element
needs to be created. As a result, MessageBuilders are employed to construct the
message depending on the content type.

These descriptions can be considered to be complex and since it is not likely we will
want to change them, we can have axis2.xml, since it has configured all commonly
used content types along with their corresponding Builders and Formatters.

A simple example of this is JSON. We can send a JSON message by setting the
necessary content type. Axis2 will then identify that, and use the JSON Builder
to build the message. As a result, we will get the AXIOM element from the JSON
message. In the same way, when we want to send out Axis2, we can serialize the
AXIOM element as the JSON message.

TransportReceiver and TransportSender
Axis2 is said be transport-independent, and hence theoretical. We can communicate
with Axis2 by using any of the given transports.

For example, Axis2 has inbuilt support for HTTP, TCP, SMTP, and JMS. These can be
easily configured.

The Transport Sender helps to serialize (AXIOM -->XML) and handle the message
exchanges depending on the underlying protocol. Whereas, the Transport Receiver
deserializes (XML-->AXIOM) an input stream into AXIOM and responds to the client
according to the protocol. We do not need to bother about configurations, as the default
axis2.xml file comes with a set of transports along with their default configurations.

Flows and PhaseOrder
In Chapter 4, we discussed the use of Flows and Phase orders when we were
discussing the execution chains of Axis2. Even for these, Axis2 comes with a default
configuration, and most of the time, we do not have to make changes. However, if it
is necessary to change the configurations, then we can refer to Chapter 4.

Chapter 6

[77]

So far, we have discussed the different types of configuration data that come from
axis2.xml. Now, we will have a look at the other types of descriptions.

AxisModule
In simple terms, an AxisModule is a run-time representation of module.xml. So, the
configuration data that is found in module.xml is also present in AxisModule. A
module configuration file or module.xml contains the following types of data:

Module name
Module description
Handlers and Phase rules
End point and Operations
WS-Policy
Parameters

At the time of deployment, an AxisModule is populated with the help of the data
from module.xml. And at run time, any of this data can be retrieved via the same
AxisModule. The parent description of the AxisModule is AxisConfiguration.

Service Description Hierarchy
We know that the AxisService hierarchy is created either by using a services.
xml file or the service descriptor. This hierarchy contains four types of descriptions.
When we deploy a service into Axis2, an object hierarchy will be created, and then
it will be added to AxisConfiguration. Therefore, unless the services are deployed
in Axis2, we will not have the service objects hierarchy in the AxisConfiguration.
Unlike AxisModules and other descriptions (Transports, Message Formatters, and so
on), the service description hierarchy is likely to get changed at run time depending
on the deployment options. A typical services.xml file is shown below, so that we
can discuss this object hierarchy in a more specific manner.

<serviceGroup>
 <parameter name="name">value</parameter>
 <service name="Foo">
 <parameter name="name">value</parameter>
 <operation name="bar">
 <parameter name="name">value</parameter>
 <message label="in"></message>
 </operation>
 </service>
 <service name="XYZ">
 </service>
</serviceGroup>

•
•
•
•
•
•

Information Model

[78]

AxisServiceGroup
AxisServiceGroup is the top-most component of the service description hierarchy
and it is the child of AxisConfiguration. AxisServiceGroup can be considered the
parent of a set of AxisServices which are defined in services.xml. Once we define
a parameter in AxisServiceGroup, it can be accessed either from AxisService,
AxisOperation, or AxisMessage. In addition to the parameters, an AxisServiceGroup
may contain a collection of modules engaged to this particular AxisServiceGroup.

AxisService
An AxisServiceGroup should contain one or more AxisServices as children.
Therefore, any of the configurations (such as parameters) defined in
AxisServiceGroup or AxisConfiguration are easily accessible within an AxisService.

The following data is found within AxisService:
AxisOperations
Parameters
Engaged modules
Namespaces
Exposed transports
Description about the service
Message Receivers
WS-Policy

We will be discussing each of the above topics in detail in the next chapter. In the
next chapter, we will also look at services.xml.

AxisOperation
AxisOperation is the run-time description representation of an exposed Web
Service operation. Let us say we have published an operation called "bar" in the
Web service "Foo". Then there should be an AxisService object called "Foo", and
that object should have an AxisOperation object called "bar". The parent description
of an AxisOperation is the AxisService, and any parameter defined in the parent's
descriptions can be accessed inside the child, in this case, the AxisOperation. So, any
parameter in AxisConfiguration, AxisServiceGroup, or AxisService can be accessed
and used inside AxisOperation. In addition to these parameters, AxisOperation
contains the following:

AxisMessages
Engaged modules

•
•
•
•
•
•
•
•

•
•

Chapter 6

[79]

Operation name
SAOP actions
WS-Policy

AxisMessage
AxisMessage is the bottom element of the service hierarchy, and its parent is
an AxisOperation. Unlike AxisService, an AxisOperation does not have a set of
AxisMessages. The number of AxisMessages in an AxisOperation is based on the
MEP of that particular AxisOperation. For example, if the operation is "in-out", then
it will have only two AxisMessages, one to represent the in-message configuration,
and the other to represent the out-message configuration. AxisMessage has the
following set of data:

Parameters
WS-Policy
Message Label
Element Qname of the corresponding schema element (optional)

Having message elements inside the operation element of services.xml is optional.
You need to add them only if you have to override the default.

Now we have a good understanding of the most commonly and publicly available
descriptions, that is, static data, in Axis2. Now, it's time to have a look at the
other type of data in Axis2, namely run-time data. We will also have a look at the
relationship between static data and run-time data. The following figure (overleaf)
shows the relationship between the description hierarchy, its contexts and the
run-time data hierarchy.

Axis2 Contexts
The Axis2 Context hierarchy is the run-time data representation of Axis2. The
run-time data comes into the picture only when Axis2 receives a message. The
run-time data is used to share data across multiple invocations, or among handlers
in one of the invocations. When we were discussing the description hierarchy, we
looked at how parameters act as the main configuration mechanism. In contexts,
the main configuration or data-sharing mechanism is the use of properties. Unlike
parameters, we do not need to define properties anywhere, since we can easily create
and use them. The properties are stored as name-value pairs in the context hierarchy,
which means that if we add a property to one of the contexts, then that property can
be accessed as well as overridden by any of its child contexts.

•

•

•

•

•

•

•

Information Model

[80]

The figure below shows the relationship between static data and run-time data
in Axis2.

From the above figure, we can observe that the top-most component of the
hierarchy is ConfigurationContext. The only difference in ConfigurationContext
when compared to the other contexts is that it is the only context that exists in the
system before a message is received. ConfigurationContext has a reference to an
AxisConfiguration, and to create ConfigurationContext, it is required to have an
AxisConfiguration available.

ConfigurationContext
A ConfigurationContext is a run-time representation of the whole system.
To start Axis2, we need to have a ConfigurationContext. The lifetime of
the ConfigurationContext will be the lifetime of the system. So, if we store
a state (property), it will last forever, that is until the system shuts down.
ConfigurationContext can be considered not only the parent of all the other contexts,
but also the original element of the entire Axis2 system.

Chapter 6

[81]

ServiceGroupContext
When a message is received by Axis2, the ServiceGroupContext is created to store
and share data across services. To create a ServiceGroupContext, it is required to
have an AxisServiceGroup object available. An AxisServiceGroup may have one
or many ServiceGroupContexts. However, there is only one AxisServiceGroup
associated with the context. The lifetime of the ServiceGroupContext depends on the
service scope. If the service scope is "application", then the lifetime will be similar to
the system's lifetime. However, if the service scope is "request", then there will be a
ServiceGroupContext created for each and every invocation. If we want to share data
across multiple services in any of the ServiceGroups at run time, a ServiceContext
helps to provide the same.

ServiceContext
A ServiceContext represents the run-time data for a given service. To create a
ServiceContext, we need to have a ServiceGroupContext object, and an AxisService
object available. The lifetime of the ServiceContext depends on the service scope.
If we want to share data across multiple invocations of the same service, then
ServiceContext can be used to store that data.

Let us say, we have a service with three operations: "login" ,"doSomething", and
"logout". Now, assume that we need to share data across these three operations. In
such a case, the ServiceContext can be used. The number of ServiceContexts in a
ServiceGroupContext depends on the number of AxisServices in the corresponding
AxisServiceGroup.

OperationContext
An OperationContext represents the lifetime of an MEP. More often than not, the
lifetime of an OperationContext is shorter than that of the ServiceContext. We can
use OperationContext to share data among messages in an MEP. For example, if we
want to share data between a request and the response, then an OperationContext
can be used. The number of OperationContexts in a ServiceContext is not related to
the number of AxisOperations in an AxisService. It is dependent on the number of
method invocations in a given service.

Information Model

[82]

MessageContext
When a message is received by any transport, the transport creates a MessageContext
to represent the incoming message. To create a MessageContext, we need to have
the ConfigurationContext available. The lifetime of the MessageContext is similar
to the processing time of the message. For example, the lifetime of an incoming
MessageContext is the time taken for a message to travel from the transport receiver
to the message receiver. In the case of an outgoing message, the lifetime will be the
time taken by a message to reach the transport sender, from the moment it leaves the
message receiver.

Although we can see a hierarchy, in the case of incoming messages, the hierarchy
will not be complete until the message has passed the dispatchers. Until that
happens, it has only the ConfigurationContext. In the case of outgoing messages, the
complete hierarchy is available.

Summary
In this chapter, we have discussed the run-time data hierarchy and the static data
hierarchy. We discussed how and when these are created. Most of the things we
discuss here are important if you plan to create a rather complex service such as a
session-aware service, or you plan to write handlers. If you are going to use Axis2 to
simply deploy and invoke a service, then you do not need to worry too much about
the facts discussed here.

Writing an Axis2 Service
Axis2 involves a number of ways in which a Web Service can be deployed. We have
already discussed some of them briefly in Chapter 5. The main objective of this
chapter is to learn how to write and deploy a Web Service as a service archive file.
Here, we cover the two fundamental approaches that are commonly used in the
industry to create a Web Service. At the end of this chapter, we will have a very good
understanding of creating a Web Service and deploying it in Axis2.

Introduction
When it comes to creating a Web Service, we have two commonly used techniques.
Each of the techniques has its own advantages, as well as disadvantages. These
commonly used techniques can be classified as follows:

Code-first approach
Contract-first approach

In the code-first approach, we start Web Service development from code, that is, we
first discuss and decide what to do, and later implement that. In simple words, we
first write the service implementation class, and then create the Web Service based
on that.

However, in the second approach, we first write the Web Service Description
Language document (WSDL), and then we create (or generate) the service class,
by using WSDL. This approach is called the contract-first approach, since WSDL is
assumed to be a contract between two or more parties.

When we consider both these approaches together, we can consider their pros
and cons. In the first approach, we write the service implementation class and other
relevant classes first. When we do so, we do not need to understand the Web Service
concepts. What we do is write our service implementation class with a set of public
methods that we are planning to expose as Web Service operations. This way, one
can deploy a service without having any knowledge of WSDL and SOAP.

•

•

Writing an Axis2 Service

[84]

This approach is also called the POJO (Plain Old Java Object) approach. Another
advantage here is that you can change your service class as and when you wish to,
since you do not need to worry too much about method parameters, methods names,
and so on. So the key objective is to meet the customers’ service requirement in a
very convenient manner.

However, in the contract-first approach, normally there is an agreement between two
or more parties, and they come up with one or more contracts among them. And those
contracts might be based on the underline protocols, security considerations, and some
other factors such as policies. Here, the contract is written using WSDL. By using the
contract WSDL, one can create a client while the other can create a service. We can find
tools in any Web Service framework to create both the client-side as well as server-side
code by using the given WSDL. The approach of creating service and client code using
WSDL is called code generation. Further, the generated code are called data-bound
classes. The advantage here is that we can use the tools available in the distribution to
create a service skeleton, or the service proxy (stub), and we can fill the skeleton. The
disadvantage is that, if we need to change the WSDL, then we have to generate the
code again. But in the code-first approach, changing the service class is very simple.
However, once two parties have agreed upon a set of policies, and have come up with
the WSDL, then it is not likely to be changed.

If we are new to the Web Services area, then the best thing is to start with the POJO
approach, since that is just writing a set of lines of Java code. We can expose the Java
class as a Web Service and consume it universally. So, let us discuss the code first,
and see how we can write an Axis2-compatible Web Service using a Java class.

Code-First Approach
As we have discussed, in the code first approach, we start by writing the service
implementation class or the class that provides the service. So, first, we will write a
simple Web Service, which says hello, when the service is invoked. And we
will further assume that we need to give our name as the input parameter to the
Service operation.

Single-Class POJO Approach
So in this case, let us assume that our service class does not have any package name
and will appear as follows:

public class HelloWorld {
 public String sayHello(String name) {
 return "Hello " + name;
 }
}

Chapter 7

[85]

As we discussed in the Axis2 deployment model, we have a number of options to
deploy the service as well. Let us start with the simplest approach to deploy and
invoke the service:

Step 1: Compile the Java class, then find the HelloWorld.class file.

Step 2: Go to <TOMCAT_HOME> | webapps | axis2 | WEB-INF

Step 3: Create a directory called 'pojo' inside the WEB-INF directory.

Step 4: Then, copy the HelloWorld.class file into the pojo directory.

Step 5: If Tomcat is not running, then start it.

Step 6: Go to http://localhost:8080/axis2/services/listServices , where we
can find a service called HelloWorld.

Step 7: Now type http://localhost:8080/axis2/services/HelloWorld/
sayHello?name="Axis2" there. We will be able to see 'Hello Axis2' in the browser.
Let us do the same thing again changing the name parameter, which will give us the
expected output.

What this simply means is that we have successfully deployed our service and we
have invoked the service in the REST manner.

This is the easiest way to write and deploy services in Axis2. Though the sample we
have chosen is a very simple one, we can write any kind of complex services in this
manner. However, the only limitation is that we cannot have a package name in the
service class. If we want to have the package name, then we have to follow some
other alternative, which we will be discussing later in this chapter.

In the case of Axis2 POJO support, we can deploy with an annotated Java class on a
non-annotated (plain) Java class. It should be mentioned here that Axis2 has support
for JSR 181 annotation. For those who are not familiar with annotation, it is a
mechanism to provide metadata while using POJO. A simple Java class with a basic
JSR 181 annotation can be written as follows. It should be noted that we can provide
much data and can do very complex applications with annotation.

import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.WebParam;
@WebService (targetNamespace = "http://sample.org/helloWorld" , name =
"HelloWorld")
public class HelloWorld {
 @WebMethod (action = "urn:sayHello" ,operationName = "sayHello")

Writing an Axis2 Service

[86]

 public String sayHello(@WebParam (partName = "name") String name)
{
 return "Hello " + name;
 }
}

This type of annotation is only supported in JDK 1.5 or above. Even if you do not
know much about annotation, there is no need to worry. First, let's try to learn the
Axis2 concept. Then applying annotation will be easier.

POJO with Class Having Package Name
As we have discussed earlier, when we deploy POJO as '.class' files, we cannot
have a package name in the Java class. Another issue is to have a POJO with more
than one class, in which case we cannot use the single class POJO approach. Now, let
us say our class looks like this:

package book.sample
import javax.jws.WebService;
@WebService
public class AddressService {
 public Address getAddress(String name) {
 Address address = new Address();
 address.setStreet("Street");
 address.setNumber("Number 15");
 return address;
 }
}

Please note here that we have annotated the Service class, and the Address class will
look like this, which is simply a Java bean.

package book.sample
public class Address {
 private String street;
 private String number;
 public String getStreet() {
 return street;
 }
 public void setStreet(String street) {
 this.street = street;
 }
 public String getNumber() {
 return number;
 }
 public void setNumber(String number) {
 this.number = number;
 }
}

Chapter 7

[87]

Now what we have to do is to compile the source code and create a Java Archive
file (.jar) file. Next, we need to edit our axis2.xml file to add a deployer to handle
the .jar file. We can do that by adding following entry to the axis2.xml file in
<TOMCAT_HOME> | webapps | axis2 | WEB-INF | conf | axis2.xml

<deployer extension=".jar" directory="pojo" class="org.apache.
axis2.deployment.POJODeployer"/>

The next step is to go and drop the .jar file into <TOMCAT_HOME> | webapps |
axis2 | WEB-INF | pojo

We need to keep in mind that when we make any configuration changes in
axis2.xml, we have to restart the system to apply the changes.

As we know, a .jar file may contain one or more .class files. So, there should be a
way to identify the service class (or classes) in it. That is why we have annotated the
POJO class with @WebService. Once we have that, Axis2 will identify it and expose it
as a Web Service.

To see what has happened, if Tomcat is running then let's restart and go to
http://localhost:8080/axis2/services/listServices, where we can find a
service called AddressService.

If we have turned on hot deployment, then we can change either the .class files or
the .jar file and redeploy them. Axis2 will implement the changes we made.

Deploying a Service Using a Service
Archive File
The POJO approach cannot be considered the most suitable approach, or the
most flexible approach, when compared with the different options available in
the code-first approach. Even Axis2 does not recommend the POJO deployment
approach. The recommended one is the service archive-based approach. We can
use the POJO approach during the initial stages of service development, as it is
very convenient. Now, let us see how we can create a service archive file from the
HelloWorld Java class.

Writing an Axis2 Service

[88]

Writing the services.xml File
In order for it to be a valid service in Axis2, you should have the services.xml
file inside the service archive file, while deploying a service as an archive file. The
services.xml file is nothing but the deployment descriptor for the service that you
are trying to deploy. The service deployment descriptor tells the deployment module
how to configure and deploy the service. Writing services.xml for the service
mentioned earlier is very simple and straightforward. There are few things that we
have to keep in mind while writing a services.xml file:

The fully qualified class name of the service implementation class
The MessageReceiver or receivers that we are going to use

Axis2 has a set of built-in MessageReceivers. Some of them can only handle the
XML-In and XML-Out scenario, and these are called RawXML MessageReceivers.
There are also message receivers that can handle any kind of JavaBeans + simple Java
types + XML, and they are called RPC MessageReceivers. From the earlier sample
code, it is obvious that we can use none of the RawXML MessageReceivers for this
particular service. So the simple answer is to use the RPC MessageReceivers.

There are different ways of writing services.xml, and they vary depending on
the way we specify the message receivers, operation overriding, and so on. Let's
start with a very basic services.xml file to understand the concept easily. The
services.xml file corresponding to our service can be written as follows:

<service name="HelloService">
 <description>
 This is my first service, which says hello
 </description>
 <parameter name="ServiceClass">HelloWorld</parameter>
 <operation name="sayHello">
 <messageReceiver
 class="org.apache.axis2.rpc.receivers.RPCMessageReceiver"/>
 </operation>
</service>

As you can see, we have highlighted a few lines in the above services.xml
file. They are the important XML tags that you have to remember while writing
services.xml.

•

•

Chapter 7

[89]

Service Implementation Class
To specify the corresponding service implementation class, we need to add a
parameter with the name ServiceClass, and the value of that parameter should be the
fully qualified name of the service implementation class. As you can see, in this case
it is HelloWorld. If we have a package name in the service class, then the parameter
would be a fully qualified name.

Specifying the Message Receiver
There are few ways to specify the MessageReceiver for a given service. One way
is to add the operation tag with the actual Java method name, and include the
message receiver inside the operation tag. The services.xml file shown opposite
has followed this approach. As you can see, the service implementation class has a
method called sayHello, and the services.xml has an operation tag with the same
name, and inside the operation element, it has added the message receiver element.

Creating a Service Archive File
The next step is to create a service archive file containing the compiled code of
the service implementation class, and the services.xml file. The internal folder
structure of the service archive file looks like this:

 HelloWorld.aar

 META-INF

 Services.xml

 HelloWorld.class

Deploying the service is just a matter of dropping the service archive file into the
services directory in our Axis2 server repository. If your server is Tomcat, then we
can easily upload the service using the Axis2 web administration console as well. In
this case, the name of the service will be "HelloService".

Different Ways of Specifying Message
Receivers
As mentioned above, there are several ways of specifying message receivers for a
given service:

Specify message receivers at the operation level for each operation.
Specify message receivers at the service level for the whole service.
Specify service-level message receivers and override them with operations,
as and when required.

•
•
•

Writing an Axis2 Service

[90]

Specify Message Receivers at the Operation Level
The example we have discussed used the first approach where it specified the
message receiver at the operation level.

Specify Message Receivers at the Service Level for
the Whole Service
Think about the scenario where we have a number of operations to be published
in services.xml. In such a case, adding the message receiver for each and every
operation seems troublesome. If we can specify the message receiver for the whole
service, then it will make the job of the service author easy, and will simplify the
services.xml as well.

Axis2 has built-in support for all the eight MEPs (Message Exchange Patterns)
defined in WSDL 2.0. In services.xml, we can specify the MEP and the
corresponding message receiver. Depending on the MEP that the operation belongs
to, Axis2 picks up the message receiver automatically, and sets the selected message
receiver for the operation.

Inside the operation tag in services.xml, we can add an attribute to specify the
MEP of the operation as follows:

 <operation name="sayHello" mep="http://www.w3.org/2004/08/
 wsdl/in-out" />

Defining the service-level message receivers for a given service is shown below:

Chapter 7

[91]

According to services.xml, the RPCMessageReceiver is the message receiver for
all the in-out operations (any operation that belongs to the in-out MEP will assign
this message receiver as its own message receiver) in the service. The service-level
message receiver for the in-only MEP is RPCInOnlyMessageReceiver. If we re-
deploy the HelloWorld service with the new services.xml, we will definitely get
the same result, if we invoke the service again.

Specify Service-Level Message Receivers and
Override Them with Operations
There may be instances when the service author wants to use a different message
receiver for one or two operations, when he or she defines the service-level message
receivers. Overriding the service-level message receiver by operation can be easily
achieved by just adding the message receiver element to the operation for which
you want to override. A sample services.xml, which follows this technique, is
shown below:

Operation sayHello uses a different message receiver as compared to its
service-level message receivers.

All the public methods in the service implementation class are exposed whether we
have specified that in services.xml or not. Axis2 calculates the MEP of an operation
by checking its corresponding Java method. If the method is void, then the MEP
will be in-only, else it will be in-out, depending on which, the right MEP message
receiver will be set.

Writing an Axis2 Service

[92]

Service Group and Single Service
There may be many instances where we want to deploy multiple services (which
may be logically related or not) together in a single service archive file. To do that,
Axis2 has the concept of a ServiceGroup. Here, we can have multiple service
implementation classes and only one services.xml file to describe all the services.
The only difference here is that the root element of the services.xml is changed
to serviceGroup instead of service. As an example, say we want to deploy two
services together in a single service archive file and further assume that their names
are MyService1 and MyService2 respectively. The services.xml file can then be
written as follows:

<serviceGroup>
 <service name="MyService1">

 </service>
 <service name="MyService2">

 </service>
</serviceGroup>

The only difference in the service element, as compared to HelloWorld's services.
xml, is that the service element has an additional attribute called name. If we want
to have multiple service elements in the services.xml file, then it is must have the
name attribute in each and every service element.

Adding Third-Party Resources
There may be many instances where we want to use a third-party library in our Web
Service. We already know that each service and module in Axis2 is isolated (meaning
each service and operation gets its own class loader). So, when we want a third-party
library in our Web Service, Axis2 has a mechanism to do that, which is to simply
create a lib folder inside the service archive file, and drop the library or resource
inside that. Assume that we have a service, and we need to use foo.jar and
bar.jar, and xyz.properties in our service, then our service archive file will look
like this:

MyService.aar
 META-INF
 services.xml
 lib
 foo.jar
 bar.jar
 xyz.properties

Chapter 7

[93]

Service WSDL and Schemas
When we write complex applications, we will find the need to have WSDL
files and Schema files inside the service archive file. When we consider an
enterprise-level application, it cannot let the client rely on auto-generated WSDL.
Then, we need to have a solid and well-defined WSDL file. Therefore, we need to
deploy our service along with the WSDL file and the corresponding XML Schema
files as well. Therefore, when we want to add WSDL files, we can add them to the
META-INF directory. The only thing we have to remember when we do this is that
the service name in the services.xml file and the WSDL service name should be the
same. The service archive file with the WSDL file will look like this:

MyService.aar
 META-INF
 services.xml
 myservice.wsdl
 schema.xsd

So when we have the WSDL file and services.xml, then the relationship will look
like this:

WSDL file

<wsdl:definitions xmlns:wsdl=http://schemas.xmlsoap.org/wsdl/ …..>
<wsdl:types>
<xs:schema targetNamespace="http://org.apache.axis2" … >
</xs:schema>
</wsdl:types>
<wsdl:portType name="MyPort">
</wsdl:portType>
<wsdl:binding name="MyBiding" type="tns: MyPort">
</wsdl:binding>
<wsdl:service name="MyService">
 <wsdl:port name=" MyPort " binding="tns: MyBiding ">
 <soap:address location="http://127.0.0.1:8080/axis2/services/
MyService" />
 </wsdl:port>
</wsdl:service>

Services.xml

<service name="MyService">

</service>

Writing an Axis2 Service

[94]

Contract-First Approach—Starting from
WSDL
The easiest and the most suitable way to create a service is to start from WSDL,
and that is what happens in most enterprise-level applications. When it comes to
enterprise-level applications, they have business scenarios and a corresponding
business contract or the WSDL file so why not start from there? The interesting thing
here is that both the client and the service provider are given the same WSDL and
they have to act according to that.

Axis2 has built-in support for generating service code. Once we have the WSDL, so
in this case as a service author we have only to do the following few steps:

Generate the service code (service skeleton).
Fill the service skeleton according to the business agreement.
Run the generated ant build file.
Deploy the ant-created service archive file into our application server where
Axis2 is running.

Generating Code
Axis2 comes with a set of tools and IDE plug-ins for code generation (WSDL2Code)
in order to make the work easier. So, we can choose any kind of code generation
tool to generate the service skeleton. In the meantime, there are a set of
data-binding frameworks supported, so you can select one of them as your
data-binding. As an example, you can select xmlbeans, adb, or any other available
data-binding framework (jibx, jaxme, and so on). Once we generate the server-side
code, it generates:

Service skeleton class
MessageReceivers (most of the time one or two)
services.xml

services.wsdl

Ant build file

Filling the Service Skeleton
Axis2 generates the service skeleton class to throw UnSupportOperation from each
method. So, what we have to do now is to implement the service skeleton class, as
we wish.

•

•

•

•

•

•

•

•

•

Chapter 7

[95]

Running the Ant Build File
After completing the service skeleton, the next step is to create the service archive
file using generated code. To make the job simpler, Axis2 generates the ant build
file to create the service archive file for us. So what we have to do is to open the
command-line console, and go to the folder where we generate the code, and then
type Ant build in the console to run the ant build file, which then creates the service
archive file for us.

In this chapter, we have only discussed the contract-first approach. We will learn
more about code generation and data-binding in detail, later in this book. There, we
will cover a number of examples as well as available tools.

Deploying the Ant-Created Service Archive
File
Once we create the archive file, deploying it is just a matter of copying the file into
repository/service directory. If we use WAR-based deployment mechanisms,
then we can upload the service.

Summary
Making a Java class into a Web Service is very straightforward in Axis2. Once
we know how to write services.xml correctly, then we can do more complex
applications than just POJOs. And deploying a service is just a matter of creating the
service archive file and dropping it into the services directory in the repository. The
WSDL-first approach is the easiest way of creating a service, since Axis2 has built-in
support for code-generation and also a set of tools to make the job easier.

Writing an Axis2 Module
Web Services are becoming popular and so everyone is moving into the Web
Services area, as a result of its various advantages. Therefore, when applications
are converted into Web Services, a number of requirements come into the picture.
In such instances, just having a Web Service framework is not enough; the quality
of service also forms an essential part. Therefore, in order to be a useful Web
Service processing framework, it is essential to have qualty-of-service support as
well. Quality of services is nothing but Web Service enhancement, such as security,
reliability, transaction support, and so on. The Axis2 architecture is such that we
can extend the system to have quality-of-services support with little effect; that is
achieved by using the concept of modules.

Introduction
Looking back at the history of Apache Web Services, the stack Handler concept can be
considered one of the very useful ideas. Therefore, Axis2 has incorporated the handler
concept into its architecture. However, the way in which we deploy handlers in Axis2
and Axis1 is quite different. In Axis1, we need to make some global configuration
changes in order to add a handler. But when it comes to Axis2, we can add a handler
very easily without making much change to the global configuration files.

At the design stage of Axis2, one of the key considerations was to have a mechanism
to extend the core functionality with less effect. During that time, WS-Reliable
implementation for Axis1 was doing a large amount of work to implement Reliable
Messaging. This was the major reason for this consideration. Therefore, as a result of
learning a lesson from Axis1, Axis2 introduced a very convenient and a very flexible
way of extending the core functionality, apart from providing quality of services. This
particular mechanism is known as the module concept.

Writing an Axis2 Module

[98]

Module Concept
In Chapter 4, we discussed what a handler is all about, and its various uses.
The main purpose of handlers is to intercept the message flow along with some
processing. A module is nothing but a collection of one or more handlers along with
a number of configuration files and other resources. We can look at a module as an
implementation of a Web Service specification. As an illustration, Apache Sandesha
is an implementation of WS-RM specification, whereas Apache Rampart is an
implementation of WS-security. Similarly, a general module is an implementation
of a Web Service specification. On the other hand, one can also write a module to
do custom processing . For example, one can write a module to log all the incoming
messages or to count the number of requests.

Module Structure
One of the issues we have in Axis1, when we want to implement a new specification,
is the amount of work. Let's say we want to implement a new specification with a
set of handlers and configurations. The amount of work involved to get the job done
would be very high. The problem becomes more difficult when we want to have
third-party libraries for our new specification support. To overcome this issue, the
Axis2 module concept and its structure can be considered a good option. As we
discussed in the section on deployment, both Axis2 services and modules can be
deployed as archive files. Inside any archive file, we can have configuration files,
resources, and the module required by the author.

One thing to note here is that, though we can deploy services when the system is up
and running, we cannot deploy modules at run time. (We can drop them into the
directory but Axis2 will not recognize them, so there would be no hot deployment
or hot update). The main reason behind this is that, unlike services, modules tend
to change the system configurations and making system changes at run time to an
enterprise-level application cannot be considered advisable.

As we have discussed earlier, adding a handler to Axis1 involves global
configuration changes and obviously a system restart. However, when it comes to
Axis2, we can add handlers using modules, without making any global-level changes
(there are instances where we do have to make global configuration changes, but
they are not all that frequent). Also, you can change the handler chain at run time
without shutting down the system (I mentioned earlier that changing the handler
chain or any global configuration at run time cannot be considered advisable; but at
the testing stage, we can do that).

Chapter 8

[99]

The structure of a module archive file is almost identical to that of a service archive
file, except for the name of the configuration file. We know that, for a services archive
file to be a valid one, it must have a services.xml file; in the same way a module
archive has to have a module.xml file inside the META-INF directory of the archive
in order to be a valid one. A typical module archive file takes the structure as shown
in the figure below. We will discuss each of the items in detail and create our
own module.

Module Configuration File (module.xml)
We know that a module archive file is a self-contained package. So, it has to have
all the configurations required to be a valid and useful module, and this is simply
the beauty of a self-contained package. The module configuration file or module.xml
file is a configuration file that Axis2 can understand well and perform the
necessary work.

A simple module.xml file has only one handler but when it comes to complex
modules, we can have some other configurations in module.xml. First, let's look at
the types of configurations available in module.xml with an example module, which
counts all the incoming and outgoing messages, under these headings:

Handlers and Phase Rules
Parameters
Module implementation class
WS-Policy
End points

•

•

•

•

•

Writing an Axis2 Module

[100]

Handlers and Phase Rules
As we have discussed earlier, a module is a collection of handlers. Irrespective of the
number of handlers in a module, the module.xml file provides a convenient way
to specify the handlers. The most important fact is that module.xml can be used to
provide enough configuration options to add a handler into the system at the exact
location where the module author wants to see the handler running. In Chapter 4, we
learned about phase rules being a mechanism to direct Axis2 to put handlers into a
particular location in the execution chain. Let's have a look at them with the help of
some examples.

Before learning how to write phase rules and specifying handlers in module.xml,
let's look as to how a handler is written. The following are the two ways of writing a
handler in Axis2:

Implement org.apache.axis2.engine.Handler interface
Extend org.apache.axis2.handlers.AbstractHandler abstract class

Since we are going to make a very simple application, we do not have to worry
much about the Handler API. We can make our job easier by extending the
AbstractHandler class. When we extend the abstract class, we only need to
implement one method called "invoke". The code below illustrates how to implement
the invoke method:

public class IncomingCounterHandler extends AbstractHandler
 implements CounterConstants {
public InvocationResponse invoke(MessageContext messageContext)
 throws AxisFault {
 //get the counter property from the configuration context
 ConfigurationContext configurationContext = messageContext.
getConfigurationContext();
 Integer count =
 �� (Integer) configurationContext.getProperty
 (INCOMING_MESSAGE_COUNT_KEY);
 //increment the counter
 count = Integer.valueOf(count.intValue() + 1 + «»);
 //set the new count back to the configuration context
 configurationContext.setProperty(INCOMING_MESSAGE_COUNT_KEY,
count);
 //print it out
 System.out.println(«The incoming message count is now « +
count);
 return InvocationResponse.CONTINUE;

 }
}

•

•

Chapter 8

[101]

From the preceding code, it is clear that messageContext is taken as a method
parameter, and InvocationResponse is taken as response. If we look at the
implementation of the method it does the following:

Gets the configurationContext from the messageContext
Gets the property value specified by the property name
Then increments the value by one
Next, sets it back to configurationContext

As a module author we have to do all the logic processing inside the invoke
method, and on the basis of its result, we can decide whether AxisEngine should be
continued, suspended, or aborted. This can be done by returning the corresponding
return value. The available return types can be classified as below:

InvocationResponse.CONTINUE: Gives the signal to continue the message.
InvocationResponse.SUSPEND: Message cannot continue since some of the
conditions are not yet satisfied. So we have to pause the execution, and wait.
InvocationResponse.ABORT: Something has gone wrong. We have to drop
the message, and let the initiator know about it.

The corresponding CounterConstants class is a collection of constants, which appears
as follows:

public interface CounterConstants
{
 String INCOMING_MESSAGE_COUNT_KEY = "incoming-message-count";
 String OUTGOING_MESSAGE_COUNT_KEY = "outgoing-message-count";
 String C��������������������������������������� OUNT_FILE_NAME_PREFIX = "count_record";
}

As we know, the sample module that we are going to create is to count the number
of requests coming into the system and number of messages going out from the
system. So far, we have only written the incoming message counter, and we need to
write the outgoing message counter as well. Refer to the code below.

public class OutgoingCounterHandler extends AbstractHandler
 implements CounterConstants {
 public InvocationResponse invoke(MessageContext messageContext)
 throws AxisFault {
 //get the counter property from the configuration context
 ConfigurationContext configurationContext = messageContext.
 getConfigurationContext();
 Integer count =
 (Integer) configu�������������������������rationContext.getProperty
 (OUTGOING_MESSAGE_COUNT_KEY);

•

•

•

•

•

•

•

Writing an Axis2 Module

[102]

 //increment the counter
 count = Integer.valueOf(count.intValue() + 1 + «»);
 //set it back to the configuration
 configurationContext.setProperty(OUTGOING_MESSAGE_COUNT_KEY,
 count);
 //print it out
 System.out.println(«The outgoing message count is now « +
 count);
 return InvocationResponse.CONTINUE;
 }
}

The implementation logic will be exactly the same as for the incoming handler
processing, except for the property name, which is used in two places.

Parameters
Adding a parameter here is the same as adding a parameter in the services.xml or
axis2.xml files. We just have to add the following tag to module.xml, and Axis2 will
do the right thing for us.

<parameter name="foo">bar</parameter>

We can have any number of parameters in a module.xml file, and when we want to
access the parameter, we can do that by following these steps:

1.	 First, we need to get the AxisModule. We can do this either by using the
init method (Axis2 passes the AxisModule) or by getting the corresponding
AxisModule from the ConfigurationContext (inside the Module
implementation class) or from messageContext (inside a handler).

2.	 Then we can ask for the parameter from the AxisModule.

Module Implementation Class
When we consider an enterprise-level application, it is obvious that we have to
initialize a number of things such as database connections, reading property files,
starting up threads, and so on. Therefore, a place was required wherein we could
put the logic in our module. We know that handlers run only when a request
comes into the system, and not at the system initialization time. The module
implementation class provides a way to achieve system initialization logic as well
as system shut-down time processing. As we have mentioned above, the module
implementation class is optional. If we take the Axis2 default addressing module, it
does not have a module implementation class. For understanding purposes, we will
write a module implementation class as shown:

Chapter 8

[103]

public class CounterModule implements Module, CounterConstants {
 private static final String COUNTS_COMMENT = "Counts";
 private static final String TIMESTAMP_FORMAT = "yyMMddHHmmss";
 private static final String FILE_SUFFIX = ".properties";

 public void init(ConfigurationContext configurationContext,
 AxisModule axisModule) throws AxisFault {
 //initialize our counters
 System.out.println("inside the init : module");
 initCounter(configurationContext, INCOMING_MESSAGE_COUNT_KEY);
 initCounter(configurationContext, OUTGOING_MESSAGE_COUNT_KEY);
 }

 private void initCounter(ConfigurationContext
configurationContext,
 String key) {
 Integer count = (Integer) configurationContext.
getProperty(key);
 if (count == null) {
 configurationContext.setProperty(key, Integer.
valueOf("0"));
 }
 }

 public void engageNotify(AxisDescription axisDescription) throws
AxisFault {
 System.out.println("inside the engageNotify " +
axisDescription);
 }

 public boolean canSupportAssertion(Assertion assertion) {
 //returns whether policy assertions can be supported
 return false;
 }

 public void applyPolicy(Policy policy,
 AxisDescription axisDescription) throws
AxisFault {
 // Configuure using the passed in policy!
 }

public void shutdown(ConfigurationContext configurationContext) throws
AxisFault {
 //do cleanup - in this case we'll write the values of the
//counters to a file

 try {
 SimpleDateFormat format = new SimpleDateFormat(
 TIMESTAMP_FORMAT);

Writing an Axis2 Module

[104]

 File countFile = new File(COUNT_FILE_NAME_PREFIX + format.
format(new Date()) + FILE_SUFFIX);
 if (!countFile.exists()) {
 countFile.createNewFile();
 }
 Properties props = new Properties();
 props.setProperty(INCOMING_MESSAGE_COUNT_KEY,
 configurationContext.getProperty
 (INCOMING_MESSAGE_COUNT_KEY).toString());
 props.setProperty(OUTGOING_MESSAGE_COUNT_KEY,
 configurationContext.getProperty
 (OUTGOING_MESSAGE_COUNT_KEY).toString());

 //write to a file
 props.store(new FileOutputStream(countFile),
 COUNTS_COMMENT);
 } catch (IOException e) {
 //if we have exceptions we'll just print a message and let
//it go
 System.out.println("Saving counts failed! Error is "
 + e.getMessage());
 }

 }
}

From this, we can see that there are several methods in the implementation class,
but not all of them are in the module interface. We have the following methods for
supporting our counter module-related stuff:

Init

engageNotify

applyPolicy

shutdown

At the system start-up time, the init method is called, and at that time, the module
can do various initialization stuff. In our sample module, we have initialized both the
in-counter and the out-counter.

When we engage this particular module to the whole system, a service, or to an
operation, the engageNotify method is called. And at that time, the module can
decide whether it can allow this engagement or not. For example, we try to engage
security module to a service and at that time, the module finds that there is a conflict
in encryption algorithm. In such a case, the module will not be able to engage and
will throw an exception. As a result, Axis2 will not engage the module. In this
sample, we will not be doing anything inside the engageNotify method.

•

•

•

•

Chapter 8

[105]

Now, we know that WS-Policy plays a major role in Web Service technology, and
everyone uses WS-Policy as a mechanism to configure the quality of services. In
addition, the WSDL file should expose all the policies to the end users as well. As a
result, the end user knows what he or she needs to do. When we engage a particular
module to a service and view the WSDL of that particular service, then the module
policy should become visible. So, when we call the applyPolicy method, the
corresponding module will apply its policy to the service or the operation. When we
engage a module, Axis2 automatically calls the applyPolicy method. At that time,
the module will apply its policy to the corresponding service or to the module. In
this particular sample, we do not have any policy associated with the module, so we
do not have to worry about this method as well.

The shutdown method is called when the system shuts down. So if we want to
do any kind of processing at that time, we can add that logic into that particular
method. In our sample for demonstratation purposes, we have added code to store
the counter values in a file.

WS-Policy
Specifying a WS-Policy element in a module.xml file is one way of configuring
a module to add WS-Policy. If we consider the Sandesha2 (reliable message
implementation) module, we can find the following policy element:

<wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-utility-1.0.xsd"
 xmlns:sandesha2="http://ws.apache.org/sandesha2/policy"
wsu:Id="RMPolicy">
 <sandesha2:RMAssertion>
.......................
 	 </sandesha2:RMAssertion>
</wsp:Policy>

Endpoints
In Axis2, an endpoint is an operation of a Web Service. So adding an endpoint is
similar to adding an operation. Why, then, do we need to add an endpoint from
a module? Let's say we have a module , and that module has a set of control
operations. The most suitable example is reliable messaging, since it has a number
of control messages. Say, we need to invoke a service in a reliable manner; then, we
first have to set up a sequence with the service. To do that it will send the control
message called "createSequence" to the service we need to access. But we know
that our service does not have the createSequence method. So if we try to send the
createSequence message without adding the method Axis2 will throw an exception

Writing an Axis2 Module

[106]

saying Unable to dispatch. Therefore adding an endpoint will solve that issue; that
is, when we engage the module, it adds a method called "createSequence" to the
service at the time we engage the module (or to all the services, if we engage it to
the whole system). Then when a request comes, Axis2 will dispatch without having
any problem, and those operations have their, or that endpoint has its, own message
receiver for the purpose of method invocation.

So it is obvious that when a module needs the exchange of control operations, then
endpoints need to be added to represent those operations. Adding an endpoint is
very simple. All that we need to do is to add an operation element or elements with
message receiver and a set of action mappings. To get an idea about that, let's take
the Sandesha module as a reference. Its module.xml file has the following operation
tag to add the control operations. Remember when we have the operation tag in the
module.xml file, Axis2 will do all the processing, including creating AxisOperation
and adding it. As a module author, what we need to do is just to specify them in the
module.xml file.

<operation name="Sandesha2OperationInOut" mep="http://www.
w3.org/2006/01/wsdl/in-out">
 <messageReceiver class="org.apache.sandesha2.msgreceivers.
RMMessageReceiver"/>
 <!-- namespaces for the 2005-02 spec -->
 <actionMapping>http://schemas.xmlsoap.org/ws/2005/02/rm/
CreateSequence</actionMapping>
 <actionMapping>http://schemas.xmlsoap.org/ws/2005/02/rm/
AckRequested</actionMapping>

 </operation>

If we look at the Sandesha module.xml, we will be able to learn from it and find out
more about writing a module.xml file.

Writing the module.xml File
So far, we have written two handlers. Now, the remaining thing to be done is to
write the module descriptor file. While writing the module.xml file we have to use
phase rules to specify the location of handlers (we have discussed phase rules before
and it is now time to refresh our minds about the phase rule). The simplest module.
xml file for our module is given below:

<module name="counterModule" class="org.apache.axis2.sample.module.
request.CounterModule">
 <Description>
 Counts the incoming and outgoing messages

Chapter 8

[107]

 </Description>
 <In�����Flow>
 <handler name="IncomingMessageCountHandler"
 class="org.apache.axis2.sample.module.request.
IncomingCounterHandler">
 <order phase="Transport" after="RequestURIBasedDispatcher"
 before="SOAPActionBasedDispatcher"/>
 </handler>
 </InFlow>
 <OutFlow>
 <handler name="OutgoingMessageCountHandler"
 class="org.apache.axis2.sample.module.request.
OutgoingCounterHandler">
 <order phase="MessageOut"/>
 </handler>
 </OutFlow>
</module>

According to the module.xml file, we can identify that the description of the module,
is "Counts the incoming and outgoing messages". Moreover, it has specified two
handlers with phase rules.

As you can see, we try to put our incoming message counter into the Transport
phase, and the exact location is after RequestURIBasedDispatcher and before
SOAPActionBasedDispatcher. If you look at the default axis2.xml file, you will
find those two handlers in the inFlow. Meanwhile, the outgoing message counter
is added to the MessageOut phase, in spite of the fact that it does not specify where
exactly the handler needs to be placed in the phase.

If you look carefully, you will observe that in the root element, there is an attribute
called "class", which specifies the module interface class. And we have to remember
that this attribute is an optional one. Modules may or may not have this attribute.

Deploying and Engaging the Module
Now, we have written everything that is required for a valid module. The only
thing remaining to be done is to create the module archive file and deploy it to the
repository. First we compile our source code, which we know creates .class files.

Assuming org.apache.axis2.sample.module.request to be the package name of
our source file, we can find all the .class files under classes/org/apache/axis2/
sample/module/request.

Writing an Axis2 Module

[108]

Now create a directory called META-INF under the classes directory, and copy the
module.xml file into it. Then, our classes directory will appear as follows:

classes
 META-INF
 module.xml
 org
 apache
 axis2
 sample
 module
 request
 CounterConstants.class
 CounterModule.class
 �� IncomingCounterHandler.class
 OutgoingCounterHandler.class

Now create a ZIP file from the classes directory, and rename the ZIP file as
counter-module.mar.

Deploying the module is just a matter of copying the file into TOMCAT_HOME/
webapps/axis2/WEB-INF/modules or repository/modules directory. In this case,
let us focus on deploying the module in Tomcat or on our favorite web application
server. As we know, Axis2 does not support module hot deployment, so just
dropping it won't make it an Axis2 module. What we need to do is to restart the
Tomcat (or other Axis2 server), and then it will deploy the module.

It should be noted that just deploying a module does not add its handlers into the
handler chain. To add handlers into the system, we need to engage the module. So,
now it's time to see how we can engage the module. For that, let us use the Axis2
web administration console. In this case, let us try to engage the module to all the
services in the system using the web administration console (we can also engage a
single service using the administration console). In order to engage the module to the
system, follow the steps given below:

1.	 Go to http://localhost:8080/axis2/.
2.	 Click on the Administration tab. Then it will open up a new page that asks

for username and password.
3.	 Type "admin" as username and "axis2" as password, then it will open up the

administration console.
4.	 Then click on the Available Modules in the left-hand side navigation menu,

where we can find our Counter module as:
counterModule: This counts the incoming and outgoing messages.

Chapter 8

[109]

5.	 Now go to Engage Module | For all Services, which will open up a new
page with a drop-down menu.

6.	 Select counterModule from the drop-down menu, and click engage.
7.	 Now, you will see the module "counterModule" engaged successfully.
8.	 Then go to Global Chains. You will be able to see the

IncomingMessageCountHandler handler in the transport phase between
RequestURIBasedDispatcher and SOAPActionBasedDispatcher.

This simply tells us that we have engaged the module successfully and have added
the handler into the correct phase. Now, in order to invoke the version service, type
the following in the browser:

http://localhost:8080/axis2/services/Version/getVersion

In the console, you will see the following:

The incoming message count is now 1.
The outgoing message count is now 1.

This simply tells us that the request has gone through the incoming counter handler
as well as through the outgoing counter handler. Now let's invoke the service one
more time and see what we get in the console.

We will see the following:

The incoming message count is now 2.
The outgoing message count is now 2.

Now we know how to write a very simple module, deploy it, and engage it. As an
exercise, we can change the module.xml file and see what happens. Also, we can
change the phase rules and see whether it places the handlers to the correct location.
In the meantime, we can restart Tomcat, and try to invoke the service, without
engaging the Module. Then we will not see any output in the console. This will help
us understand that handlers are invoked only when we engage the module.

Advanced module.xml
Here we had a look at a very simple application. But when it comes to a very
complex application, we need to have more configurations in the module.xml file. In
such cases, we might need to have parameters, WS-Policy, and endpoints.

•

•

•

•

Writing an Axis2 Module

[110]

Summary
To conclude, the quality of services is an essential part in today's Web Service world;
just having services will not solve the needs of industry. In this chapter, we learned
about the need for quality of services and the various techniques available in Axis2
to extend the system functionality. Here, we discussed the module concept, and we
wrote a sample module to understand the concept in a very clear manner. One thing
we have to keep in mind is that the sample that we have discussed in this chapter is
just to get a feel about modules. To learn more, we have to do a few more samples,
and get the concepts clear.

Client API
A Web Service framework can be used to deploy services as well as to access Web
Services. So far, we have discussed deployment. In this chapter, we will focus on the
client side. Note that the Axis2 runtime does not have two different concepts called
server and client. It uses the same execution chain at the server side as on the client
side. We are aware that there are services on the server side. So, in order to have
synchronization on the client side, Axis2 creates a dummy service when we use the
client API. In this chapter, we will have a look at the various aspects of the client API
with the help of examples.

Introduction
When it comes to a client, there are a number of factors that need to be taken
into consideration. Among them, the way in which we invoke a service is most
important—whether we invoke the service in synchronous manner or asynchronous
manner. In simple terms, invocation takes place either in a blocking manner or in a
non-blocking manner. Previously, most Web Service frameworks were focused on
the blocking invocation pattern, but now the trend is totally different. What users
are looking for is an asynchronous or non-blocking way of invoking the service, not
only in Web Services, but also in Web-based applications. They use techniques such
as AJAX to have asynchronous invocation support. In Axis2, we have two types of
asynchronous invocation, while it has support for WSDL 2.0 basic MEPs.

Blocking and Non-Blocking Invocation
As we have just discussed, there are two main ways of utilizing a Web Service,
synchronous and asynchronous (blocking and non-blocking). In the case of
synchronous invocation, you invoke the service and wait until you get the response.
Therefore, in the case of synchronous invocation, the application blocks until you get
the response.

Client API

[112]

The following figure shows how synchronous invocation Web Service utilization
takes place:

In case of asynchronous invocation, the user application (e.g. GUI) does not block, so
the user can continue working. The Axis2 way of utilizing a service in asynchronous
invocation is shown in the following figure:

Inside Axis2 Client API
It should be noted that one of the key designs of the Axis2 Client API is to provide
asynchronous Web Service invocation support. Meanwhile, user friendliness is the
main consideration of Axis2. So, by combining both, the new client API becomes
very convenient to work with. To make the Web consumers' or the end users'
job easier, the Axis2 client API consists of two sub-APIs called ServiceClient and
OperationClient, the first for average users and the second for advanced users.

Chapter 9

[113]

ServiceClient API
As we mentioned earlier, ServiceClient is mainly designed for average users, or
for Web Services beginners. But nevertheless, it has the notion of interacting with
a service. If we take a calculator as an example of a Web Service, then that service
would have operations such as "add", "subtract", "multiple" and "divide". So the idea
of the service client is to provide an API to invoke any of those operations in a very
convenient manner.

Available Ways of Creating a ServiceClient
There are multiple ways to create a ServiceClient instance. We have a variety of
constructors to use. No matter how we create a ServiceClient, we are required to
have an Axis2 runtime (ConfigurationContext) in order to invoke the service.

We have already discussed ConfigurationContext, so we know how to create
it. As a result, we can use those techniques to create ConfigurationContext
while creating a ServiceClient, or we can create a ServiceClient with
ConfigurationContext as null, and allow Axis2 to create ConfigurationContext
for the users.

Type 1: Creating a ServiceClient using Its Default
Constructor
The easiest way to create a ServiceClient is to use its default constructor. In this
case, it creates a ConfigurationContext by using the Axis2 default configuration
file, which is available in the Axis2 JAR file. At the same time, it creates an
anonymous (dummy service) service with three operations (operations to support
WSDL 2.0 MEPs). Even though we create a ServiceClient in the above manner, we
can use the client that has already been created in order to access any Web Service.

ServiceClient serviceClient = new ServiceClient ();

When we try to create a ServiceClient inside an Axis2 system (as an example,
a handler tries to create a ServiceClient to invoke a service, or one service
tries to invoke some other service), then it has to be created by using the
ConfigurationContext of the server. In this case, all the properties, transports, and
modules in the server are accessible to the ServiceClient. This particular scenario
is referred to as a client running inside a server.

Client API

[114]

Type 2: Creating a ServiceClient with Your Own
ConfigurationContext
When we want to create a ServiceClient with our own configuration data, we
can use a constructor as shown below. As we already know, there are a number of
ways to create ConfigurationContext as well. At the same time, there are many
instances in which we want to create the ServiceClient with our own axisService
that might have been configured with custom QoS (Quality of Service), different
parameters, and WS-Policy.

ServiceClient serviceClient =
new ServiceClient (configContext, axisService);

In the above case, either of the arguments or both the arguments can be null. If
both are null, then it is similar to the case of ServiceClient's default constructor.
If ConfigurationContext is null, then either a new one will be created by using
the Axis2 default configuration, or it will use the ConfigurationContext of the
server. This will depend on the location in which you are trying to create the
ServiceClient. Similarly, if axisService is null, an anonymous service is created.

Type 3: Creating a Dynamic Client (Client on the Fly)
The idea of a dynamic client is to create a ServiceClient on the fly, or to simply
create a client for the given WSDL at run time, and use the created ServiceClient
to invoke the corresponding service. When we create the ServiceClient in this
manner, a corresponding axisService object is configured as per the WSDL
document. We will have a look at the advantages of the dynamic client later in this
chapter. The constructor for creating a dynamic client is as follows:

ServiceClient dynamicClient =new ServiceClient(
configContext,wsdlURL, wsdlServiceName, portName);

configContext: ConfigurationContext can be null. If it is null, then the logic
mentioned in Option 2 will be applied.
wsdlURL: wsdlURL should not be null, and specifies the URL for WSDL file.
wsdlServiceName: WSDL document might have multiple service elements.
If you want to pick a specific service element, then you can pass the QName
of that service element. The value of this argument can be null. If it is null,
then the first one from the service element list will be considered the
service element.
portName: A service element in a WSDL file might have multiple ports as
well. So, if you want to select a specific port, then you can pass the name of
the port as the value of this argument. Then again, if the value is null, the
first one from the port list will be selected as the port.

•

•
•

•

Chapter 9

[115]

In order to understand these service elements, a sample WSDL is given below:

<wsdl:service name="MyService">
<wsdl:port name="ServicePort1" binding="axis2:ServiceBinding1">
<soap:address
location="http://127.0.0.1:8080/axis2/services/MyService"/>
</wsdl:port>
<wsdl:port name="ServicePort2" binding="axis2: ServiceBinding2 ">
<soap12:address
location="http://127.0.0.1:8080/axis2/services/MyService"/>
</wsdl:port>
</wsdl:service>

ServiceClient with a Working Sample
We are aware of the types that are available to create a ServiceClient, but we have
seen no code to explain it. So, the best way to understand ServiceClient API is to
write a few real samples. But first, we need to start the Axis2 server and deploy the
sample service in the server, then, we can write a useful client to invoke the service.
We can create and deploy a service by using the following steps:

Step 1: Open an IDE, and write the following Java class or service
implementation class.

public class MyService
{
//method which has a return value
public String echo(String value)
{
return value;
}
// does not have a return value
public void update(int value) {
System.out.println("value is :" + value);
}
}

This sample service implementation class has two methods, one which possess a
return value, and the other which does not possess a return value.

Step 2: Write the services.xml file for the service. The services.xml file will
appear as follows:

<serviceGroup>
 <service name="MyService">
 <messageReceivers>
 <messageReceiver
 mep="http://www.w3.org/2004/08/wsdl/in-only"
class="org.apache.axis2.rpc.receivers.RPCInOnlyMessageReceiver"/>

Client API

[116]

 <messageReceiver
 mep="http://www.w3.org/2004/08/wsdl/in-out"
class="org.apache.axis2.rpc.receivers.RPCMessageReceiver"/>
 </messageReceivers>
 <parameter name="ServiceClass" locked="false">
MyService
 </parameter>
 </service>
</serviceGroup>

Step 3: Create a service archive file, and deploy the service in the Axis2 server.

After deploying a service in the server, we need to invoke that service. Here, we will
look at a number of scenarios to understand the concept clearly.

Scenario 1: Invoking a service in Blocking Manner
(sendReceive())
The most commonly used service invocation pattern is the request-response
invocation pattern (in-out MEP in WSDL 2.0 terminology). Most of the services
are written in such a way that they have input (s) and output, so we need use the
request-response invocation pattern. In Axis2, it can be done in two ways: in a
blocking manner or in a non-blocking manner. The first sample demonstrates how to
invoke a service in a blocking manner.

Step 1: Create a ServiceClient by using any of the constructors that are
mentioned earlier.

Step 2: Create an OMElement for the payload (as the first child of the SOAP body).
In Axis2, XML representation is built on AXIOM, so we need to create OMElement
(see Chapter 3 to learn about AXIOM).

We can use the following code snippet to create the payload that is required to
invoke the service. If you look at the service WSDL carefully, you will understand
how to create the request element.

public OMElement createPayLoad() {
OMFactory fac = OMAbstractFactory.getOMFactory();
OMNamespace omNs = fac.createOMNamespace(
 "http://ws.apache.org/axis2", "ns1");
OMElement method = fac.createOMElement("echo", omNs);
OMElement value = fac.createOMElement("value", omNs);
value.setText("Hello , my first service utilization");
method.addChild(value);
return method;
}

Chapter 9

[117]

Step 3: Before invoking the service, we need to create a metadata (property bag)
object called Options and set that to ServiceClient. The object Options contains
properties such as target EPR (End Point Reference), SOAP Action, transport data,
and so on, to configure the client side for the service invocation. The following code
snippet shows how we can create the Options object and fill it:

ServiceClient sc = new ServiceClient();
// create option object
Options opts = new Options();
//setting target EPR
opts.setTo(new EndpointReference(
"http://127.0.0.1:8080/axis2/services/MyService"));
//Setting action
opts.setAction("urn:echo");
//setting created option into service client
sc.setOptions(opts);

If we create the ServiceClient as a dynamic client, then we do not need to worry
about creating the Options object; it will be created automatically.

Step 4: sendReceive is the API for invoking a service in a blocking manner. When
we use this API, the program gets blocked until it gets a response.

OMElement res = sc.sendReceive(createPayLoad());
System.out.println(res);

Once we run this sample code, we will get the following output:

<ns:echoResponse
xmlns:ns="http://ws.apache.org/axis2/xsd">
 <return>
Hello This is my first service
 </return>
</ns:echoResponse>

sendReceive is the API for invoking a service in a blocking manner. Remember
that sc.sendReceive (createPayLoad()) works only if we create ServiceClient
by either using its default constructor, or passing a null value as axisService
parameter for any other constructors. When we create the ServiceClient by either
using our own axisService, or as a dynamic client, we have to use the following
method with the correct operation name.

sendReceive(QName operation, OMElement elem);

Client API

[118]

For example, if we create ServiceClient by using the WSDL service, then we have
to use the operation name as shown in the code below:

ServiceClient sc = new ServiceClient(null, new URL("http://
localhost:8080/axis2/services/MyService?wsdl"),null,null);
sc.sendReceive(new QName("http://ws.apache.org/axis2","echo"),createP
ayLoad());

From the above, we can conclude that it is easy to configure and invoke a service.

Scenario 2: Utilizing a Service in a Non-Blocking Manner
(sendReceiveNonBlocking())
In order to invoke an in-out MEP in an asynchronous manner, we can use this
API. There are two mechanisms for implementing asynchronous type invocation:
callback and pooling. Axis2 uses the callback mechanism to provide asynchronous
support. Therefore, in order to use a non-blocking API, we need to implement
"org.apache.axis2.client.async.AxisCallback", and pass that object as the
method parameter.

In this case, we can follow Step 1 to Step 3 in Scenario 1, without any modification,
but Step 4 needs to be changed to the following:

ServiceClient sc = new ServiceClient();
Options opts = new Options();
opts.setTo(new EndpointReference(
"http://127.0.0.1:8080/axis2/services/MyService"));
opts.setAction("urn:echo");
sc.setOptions(opts);

//creating callback object
AxisCallback callback = new AxisCallback() {

public void onMessage(MessageContext msgContext) {
System.out.println(
msgContext.getEnvelope().getBody().getFirstElement());
complete = true;
}

public void onFault(MessageContext msgContext) {
System.err.print(msgContext.getEnvelope().toString());
}
public void onError(Exception e) {
e.printStackTrace();
}

public void onComplete() {
complete = true;

Chapter 9

[119]

}
};

//invoking the service
sc.sendReceiveNonBlocking(createPayLoad(), callback);

System.out.println("-------Invoke the service---------");
int index = 0;

//wait till you get the response, in real applications you do not need
//to do this, since once the response arrive axis2 will notify
// callback, then you can implement callback to do whatever you want,
//may be to update GUI
while (!complete) {
Thread.sleep(1000);
index++;
if (index > 10) {
throw new AxisFault("Time out");
}
}

The main differences between Scenario 1 and Scenario 2 are as follows:

The need to create an AxisCallback object
sendReceiveNonBlocking is a void operation

Once we run the code sample, we will get the following output:

-------Invoke the service---------
<ns:echoResponse
xmlns:ns="http://ws.apache.org/axis2/xsd">
 <return>
Hello , my first service utilization
 </return>
</ns:echoResponse>

Similar to Scenario 1, if we create ServiceClient using our own axisService, or
as a dynamic client, then we need to use the following method with a qualified
operation name:

sendReceiveNonBlocking(QName operation, OMElement elem,
 AxisCallback callback);

•

•

Client API

[120]

Scenario 3: Utilizing a Service using Two Transports
With minor modifications, we can use Scenario 1 and Scenario 2 to send the request
using one transport and receive via another transport (for example send via HTTP and
receive via TCP). It can be graphically represented as shown in the following figure:

In order to invoke a service in the above manner, we need to have WS-Addressing
support. We also need to engage the addressing module on both the client side
and the server side. In Scenario 2, we only had an application-level asynchronous
support, but here we have transport-level asynchronous support as well.

By changing Step 3 in Scenario 2 in the manner given below, we can invoke the
service via two transports. Let us send the request via HTTP and try to get the
response via TCP.

ServiceClient sc = new ServiceClient();
Options opts = new Options();
opts.setTo(new EndpointReference(
"http://127.0.0.1:8080/axis2/services/MyService"));

//engaging addressing module
sc.engageModule(new QName("addressing"));
// I need to use separate listener for my response
opts.setUseSeparateListener(true);
// Need to receive via TCP
opts.setTransportInProtocol(Constants.TRANSPORT_TCP);

opts.setAction("urn:echo");
sc.setOptions(opts);

Here, it should be noted that we can send and receive via HTTP as well. In this case,
Axis2 will start up a new HTTP listener in order to receive the incoming message.

Chapter 9

[121]

Scenario 4: Utilizing an In-Only MEP (FireAndForget())
If we want to send some data to a server, but we worry neither about response nor
exceptions, then we could use this API. In WSDL 2.0 terminology, this API is to
invoke an in-only MEP. Let us try to invoke the "update" operation in MyService.

Step 1: Create a ServiceClient.

Step 2: Create the payload OMElement. Then, you will have to create a new payload,
since the method name is different in this case.

public OMElement createPayLoad() {
OMFactory fac = OMAbstractFactory.getOMFactory();
OMNamespace omNs = fac.createOMNamespace(
"http://ws.apache.org/axis2", "ns1");
OMElement method = fac.createOMElement("update", omNs);
OMElement value = fac.createOMElement("value", omNs);
value.setText("10");
method.addChild(value);

return method;
}

Step 3: When we run the following code, we will see "value is:10" in the server's
console. Even if something goes wrong with the server, we do not get any response
or exception.

ServiceClient sc = new ServiceClient();
Options opts = new Options();
opts.setTo(new EndpointReference(
 "http://127.0.0.1:8080/axis2/services/MyService"));

opts.setAction("urn:update");
sc.setOptions(opts);

sc.fireAndForget(createPayLoad());

Replace setTo with an invalid endpoint, and see whether you get any exception;
obviously you will get nothing.

Scenario 5: Utilizing an In-Only MEP (sendRobust())
This API also invokes a one-way operation, the only difference being that unlike in
Scenario 4, if something goes wrong with the server, the client is informed. We can
use the Scenario 4 code with minor changes to invoke the service in a robust manner.
Step 1 and Step 2 should remain unchanged, and Step 3 needs to be changed in the
following manner:

ServiceClient sc = new ServiceClient();
Options opts = new Options();
opts.setTo(new EndpointReference(

Client API

[122]

"http://127.0.0.1:8080/axis2/services/MyService"));

opts.setAction("urn:update");
sc.setOptions(opts);

sc.sendRobust(createPayLoad());

Replace setTo with an invalid endpoint and see whether you are getting
any exception.

Working with OperationClient
We already know that, with a ServiceClient, we only have access to the payload
on both sending and receiving sides. This will not be enough if we are trying
to implement enterprise-level web applications; in such a situation, we need to
have more control. Also, we may have to add custom headers into the outgoing
SOAP messages as well as access the incoming SOAP process directly. We would
be required to access incoming as well as outgoing message contexts. With
ServiceClient, we can do none of these things (however, we can get the current
OperationContext once we invoke the service, and from that we can access both
request MessageContext and response MessageContext). The solution is to use
OperationClient for both these scenarios. Let us invoke the "echo" operation by using
OperationClient for better understanding of the API.

Step 1: Create a ServiceClient instance:
ServiceClient sc = new ServiceClient();

Step 2: Create an OperationClient (we need to pass the fully-qualified
operation name similar to the one in the dynamic client case, in order to create
an OperationClient):

OperationClient opClient = sc.createClient(
ServiceClient.ANON_OUT_IN_OP);

When we create ServiceClient by using its default constructor, it creates an
anonymous service with three operations, the constant ServiceClient.
ANON_OUT_IN_OP is one of them.

Step 3: Create a MessageContext, and set properties on its option object. Refer to the
code given below:

//creating message context
MessageContext outMsgCtx = new MessageContext();
//assigning message context's option object into instance variable
Options opts = outMsgCtx.getOptions();
//setting properties into option
opts.setTo(new EndpointReference(
"http://127.0.0.1:8000/axis2/services/MyService"));
opts.setAction("urn:echo");

Chapter 9

[123]

Step 4: Create a SOAPEnvelope, and add that to MessageContext. Here, you need to
create a full SOAP envelope:

outMsgCtx.setEnvelope(creatSOAPEnvelop());

The creatSOAPEnvelope method appears as follows:

public SOAPEnvelope creatSOAPEnvelop() {
SOAPFactory fac = OMAbstractFactory.getSOAP11Factory();
SOAPEnvelope envelope = fac.getDefaultEnvelope();
OMNamespace omNs = fac.createOMNamespace(
"http://ws.apache.org/axis2", "ns1");
OMElement method = fac.createOMElement("echo", omNs);
OMElement value = fac.createOMElement("echo", omNs);
value.setText("Hello");
method.addChild(value);
envelope.getBody().addChild(method);
return envelope;
}

In the above sample, we have a default SOAPEnvelope with a sample payload. But,
we can also create a complex SOAPEnvelope on the basis of our requirements.

Step 5: Add MessageContext to OperationClient as shown below:

opClient.addMessageContext(outMsgCtx);

Step 6: To send the message, we need to call the execute method in OperationClient.

opClient.execute(true);

The Boolean method argument indicates whether we want to invoke it in a blocking
manner or a non-blocking manner. If the value is true, then the invocation will be in
a blocking manner.

Step 7: Access the response message context, and response SOAPEnvelope:

//pass message label as method argument
MessageContext inMsgtCtx = opClient.getMessageContext("In");

SOAPEnvelope response = inMsgtCtx.getEnvelope();
System.out.println(response);

When we are invoking an in-out MEP, as in this sample, the message label of the
request is "Out" and value of the response is "In". That is why we have to pass "In" as
the message label value to get the response MessageContext.

Once we have the MessageContext, we can use that to access SOAPEnvelope,
properties, transport headers, and so on.

Client API

[124]

When we run this code sample, we should get the following as console output:
<?xml version='1.0' encoding='utf-8'?>
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
<soapenv:Header />
<soapenv:Body>
<ns:echoResponse
 xmlns:ns="http://ws.apache.org/axis2/xsd">
 <return>
Hello
 </return>
</ns:echoResponse>
</soapenv:Body>
</soapenv:Envelope>

Here, we discussed OperationClient as a means of accessing the incoming
and outgoing MessageContext. One of the most useful cases is accessing the
outgoing MessageContext or the SOAPEnvelope to add headers. However, the
ServiceClient API can also be used to add SOAP headers as shown below:

sc.addHeader(SOAPHeaderBlock);

Another way of adding headers is also shown below:
sc.addStringHeader(new QName("http://sample.org/header","MyHeader"),"
headervalue");

If we intercept the message using TCP monitor or similar mechanisms, we can see
the SOAP headers in the SOAP message.

<soapenv:Header>
 <axis2ns1:MyHeader xmlns:axis2ns1="http://sample.org/
 header">headervalue</axis2ns1:MyHeader>
</soapenv:Header>

In the meantime, we can access the last OperationContext by using ServiceClient.
Refer to the code given below.

OperationContext operationContext = sc.getLastOperationContext();

From OperationContext, we can either get "In Message Context", or "Out
Message Context".

Summary
The Axis2 Client API is very convenient and it has a number of features such as
asynchronous Web Service invocations, multiple transport selection, and so on. After
the execution of the programs, we understand the basics of the Axis2 Client API;
understating the rest of the API requires us to write complex samples.

Session Management
Web Services are known to be stateless. However, when it comes to enterprise-level
applications, we have to address the issue of sessions. As a result, we cannot fulfill
the requirements of enterprise-level applications with a stateless service. While
implementing complex applications with Web Services, keeping the history or
managing the session becomes a key part of Web Services. In other words, session
management becomes an essential part while implementing enterprise-level Web
Services applications.

Introduction
As stated above, Web Services are said to be stateless. However, it is difficult to
implement complex applications without the support of session management. To
understand the need for session support, let us consider a typical bank application.
If we consider the following sequence of events associated with a typical banking
application, we can get an idea about the need for sessions:

First, the user starts the transaction by invoking the login method.
He or she withdraws money (invoking some operation on his or her account).
He or she completes the transaction by using the log out method.

We can easily understand that the three operations stated above are interrelated,
and that the same user makes the above invocations. So it means that someone
needs to keep track of the user and user data throughout the invocation of methods.
This simply implies the requirement of session management to implement banking
applications on Web Services. Of course, there are some alternative ways for
implementing this application. But there is still a need to have some other way of
identifying and authenticating users.

•

•

•

Session Management

[126]

Stateless Nature of Axis2
As we know, Axis2 architecture is such that it keeps logic and data separately.
We have two types of data models: static data and runtime data. We have already
discussed them; in this chapter, we will get detailed information about them. The
samples in this chapter will help you to understand more about runtime as well as
static data.

As far as the Axis2 SOA processing framework is concerned, everything except
run-time data can be considered stateless. A stateless nature provides better support
for concurrency handling. In Axis2 handlers, MessageReceivers, TransportSenders,
TransportReceivers, and the AxisEngine are said to be stateless, so they do not keep
any state in their classes. As a result, it does not matter whether we have one instance
or a number of instances for the same handlers. Since Axis2 has the notion of the
stateless nature of handlers, while writing handlers, we need to write them in such a
way that they do not keep any state in them. As an example, we cannot consider the
following handler implementation a good approach. We can see that it has a class
variable to store the MessageContext. So, when we deploy Axis2 in a concurrent
environment, we will definitely have issues. As a best practice, we need not to use
any class variables in our code.

public class InvalidHandler extends AbstractHandler {
 //Class varible to keep current MC
 private MessageContext currentMessageContext;
 public InvocationResponse invoke(MessageContext msgContext) throws
AxisFault {
 currentMessageContext = msgContext;
 //We need to write whatever the log we need to have here
 return InvocationResponse.CONTINUE;
 }
}

Well, this does not mean that we cannot maintain state in Axis2. It simply tells
us that keeping states in implementation classes is not the right approach. Axis2
supports a better approach to storing and handling sessions using context hierarchy.

Types of Sessions in Axis2
As mentioned earlier, it is very difficult to implement enterprise-level applications
using Web Services without having proper session management. On the other
hand, it is not mandatory to have session management support in a Web Service
framework. We might have services that do not require session management at all.
However, Axis2 development team decided to have session management support in
Axis2; then it would be helpful for both types of users (developers who need session
support and developers who do not need session support).

Chapter 10

[127]

It is obvious that when we have more functionality and features, it slows down the
system, and that is inevitable. So, while considering session management, we come
across some issues, especially the need to keep session-related data in memory,
which in turn increases the memory footprint. But we know that memory is not a
big issue in today's computer industry. Though we know that session management
has memory-related issues as well as performance-related issues, we need to
have a compromise on whether we support stateful service or not. Web Service
frameworks such as Axis2 are for enterprises, so they need to cater to enterprise-level
requirements. As a result, Axis2 has the capability to manage sessions.

There are different types of sessions, and the lifetime of the session may vary from
one to another. Some sessions last for a few seconds while others last for the lifetime
of the whole system. Axis2 architecture has been designed to support four types
of sessions, and we observe that there are minor differences between one type and
another. By considering the different types of use cases, Axis2 has the following four
types of session scopes:

Request
SOAPSession
Application
Transport

While discussing Axis2 run-time data, we mentioned that we need run-time data
or context hierarchy for session management. As a result, we need to have a better
understanding of session management.

There are five types of contexts in the hierarchy, which have been listed below with a
brief explanation:

ConfigurationContext: This is the run-time representation of whole system.
To start an Axis2 system, we need to have configuration context. The lifetime
of configuration context will be the lifetime of the system. So, if we store
some state (a property) it will last forever (until system shutdown).
ServiceGroupContext: In Axis2, we can deploy multiple services together
as a service group. Then, the run-time representation of that is called
ServiceGroupContext.
ServiceContext: This represents the run time of one service. The context
lifetime will be the lifetime of the session. There can be one or many
service contexts in the system, depending on the session scope of the
corresponding service.

•

•

•

•

•

•

•

Session Management

[128]

OperationContext: This context represents the lifetime of an MEP (Message
Exchange Pattern). The lifetime of an operation context is, usually less than
the lifetime of the ServiceContext.
MessageContext: The lifetime of an incoming message is represented by
the message context. If two handlers in a given execution chain want to
share data, then the best way to store them is in message context. One
OperationContext may have one or more MessageContexts.

Session Creation and Session Destruction
Talking about session management, we are aware that there is a lifetime management
associated with it. There is a specific time when a session gets started and a specific
time when the session finishes. So, whoever writes a session-aware service would need
to know when a session starts, and when it ends. To provide that information, Axis2
uses Java reflection and an optional interface to inform the service implementation
class. Actually there are two ways for a service author to get notification about session
start and end time, irrespective of the session scope.

Java Reflection
In this case, the service author has to implement the following two methods in the
service implementation class, if he or she want to be notified when the session starts
and when it finishes. At run time, when a session starts, Axis2 checks whether
the following methods are in the service implementation class. If so, it calls the
right method.

This method will be called when a session starts.
public void init(ServiceContext serviceContext) {
 // Our code goes here
}

//This method will be called when a session finishes.
public void destroy(ServiceContext serviceContext) {
 // Our code goes here
}

Using the Optional Interface
When we use Java reflection, there is very little probability of making mistakes on
the methods name and method parameters. So it is good for a user interface. Then,
we are not likely to make any mistakes. Axis2 has an interface called org.apache.
axis2.service.Lifecycle, which has the same two methods that we discussed
above. If we want to get a notification when a session starts, we write our service

•

•

Chapter 10

[129]

implementation class to implement that particular interface. Then Axis2 will
automatically call the right method. So, we can write our service implementation
class as shown below:

public class MyService implements Lifecycle {

 public void init(ServiceContext context) throws AxisFault {

 }
 public void destroy(ServiceContext context) {

 }
}

Accessing MessageContext
In the first part of this chapter, we discussed that keeping class variables just about
anywhere in Axis2 is not a good practice. So it is not a good idea to keep variables
inside service implementation classes as well. While managing session, we need to
have a way of accessing contexts to get and set session-related data. Though Axis2
passes ServiceContext when the session starts, it is not a good idea to keep that
inside the service implementation class. Therefore, we need to have a mechanism
for accessing it. We know that once we have MessageContext, we can access almost
everything using that. So, if we can get access to the current MessageContext,
then we can consider that we have everything. The next question is how to get the
current MessageContext inside the service class. Axis2 sets MessageContext into
ThreadLocal, from where we can access the MessageContext. Let's say, we want to
access the MessageContext inside the method called foo, then we can do that
as follows:

public void foo(){
 MessageContext messageContext = MessageContext.
getCurrentMessageContext();
 }

This can be used to access the current MessageContext, irrespective of the session
scope we use.

Request Session Scope
Request session scope is the default session scope in Axis2. When we deploy a
service without knowing anything about session management, then our service will
be deployed in request session scope. The lifetime of this session is limited to the
method invocation lifetime, or request processing time. When we deploy a service
in request scope, it simply means that we are not going to worry about the session
management at all. So it is not like session management at all.

Session Management

[130]

When we deploy a service in request session scope, for each and every invocation a
new service implementation class is created. Say we have deployed a service called
Foo in request scope, and a client invokes the service ten times, then there will be ten
instances of the service implementation class.

If we want to specify the scope explicitly, we can still do that by adding a scope
attribute to the service element in services.xml as follows. However, to deploy a
service in request scope, we need to do the following:

<service name="Foo" scope=" request">
</service>

To get an understanding of request scope, create a service using the following service
class, deploy it, and invoke it:

public class MyService implements Lifecycle {

 public void init(ServiceContext context) throws AxisFault {
 System.out.println("I'm inside init method ");
 }

 public void destroy(ServiceContext context) {
 System.out.println("I'm inside destroy method");
 }

 public String foo(String foo) {
 return foo;
 }
}

To invoke the service, we need to type the following in the browser:

http://localhost:8080/axis2/services/MyService/foo?foo=foo

Then we will see the following in the server console:

I'm inside init method.

If we continue to do the same, we will see it getting printed every time we invoke
the service.

It should be noted here that even if we deploy a service in a request scope, there
are many ways of keeping our service a stateful service . One way is to store
the state in the Axis2 global run time (ConfigurationContext), and retrieve it
whenever necessary.

Chapter 10

[131]

SOAP Session Scope
The idea of a SOAP session is to have a transport-independent way of managing
session between two SOAP nodes, obviously between the client and the server. Here,
Axis2 uses SOAP headers in order to manage the session. SOAP session scope has
slightly longer lifetime as compared to a request session scope, and deploying a
service in a SOAP session requires changing services.xml as well. Managing SOAP
session requires both the client and the service to be aware of the sessions, that is, the
client has to send the session-related data if it wants to access the same session, and
the service has to validate the user using session-related data.

In order to manage SOAP session, a client has to send an additional reference
parameter in the SOAP header, which is named serviceGroupId. The client will
receive serviceGroupId when a service is invoked and is deployed in a SOAP
session for the first time). SOAP session provides a way to manage sessions across
not only a single service invocation, but also multiple services in a service group.
As long as we are in the same SOAP session, we can manage service-related data in
ServiceContext and if we want to share data across other services in the group then
we can use the ServiceGroupContext to store the session-related data.

When we deploy a service in a SOAP session, and a client tries to access the service
for the first time, Axis2 will generate a serviceGroupId and send that to the client
as a reference parameter in wsa:ReplyTo, as shown below. However, it should be
mentioned that, in order to have SOAP session support, the client as well as the
server should have WS-addressing support.

<wsa:ReplyTo>
 <wsa:Address>http://www.w3.org/2005/08/addressing/anonymous</
wsa:Address>
 <wsa:ReferenceParameters>
<axis2:ServiceGroupId xmlns:axis2="http://ws.apache.org/namespaces/
axis2">urn:uuid:65E9C56F702A398A8B11513011677354</axis2:
ServiceGroupId>
 </wsa:ReferenceParameters>
 </wsa:ReplyTo>

So if a client wants to live in the same session, then it has to copy that reference
parameter and send it back to the server when it invokes the service for the second
time. As long as a client sends the valid serviceGroupId, it can use the same session,
and the service can maintain the session-related data. Unlike a request session, a
SOAP session has default time-out period. So if the client does not touch the service
for a period of 30 seconds, then the session will expire. If the client then sends the old
serviceGroupId, it will get an AxisFault. We can change the default time-out period
by changing the server's axis2.xml as follows:

<parameter name="ConfigContextTimeoutInterval">30000</parameter>

Session Management

[132]

By changing the parameter value, we can have the time-out interval that we want.

As mentioned earlier, deploying a service in SOAP session requires changing
services.xml as follows:

<service name="MyService" scope=" soapsession">
</service>

Though we discussed earlier that we have to copy the reference parameter, it should
be noted here that once we use Axis2 client, we can configure it so as to copy that
parameter automatically.

Just to get an idea about SOAP session management, let's write the following service
class and deploy it. If you look carefully at what the service class does, it adds the
current invocation's value to the previous value, and sends the result. If we kept
on doing this, we would get incremental values. First, we will write the service and
deploy that in the SOAP session, making the necessary changes to services.xml.

public class MyService {
 public int add(int value) {
 ��� MessageContext messageContext = MessageContext.
getCurrentMessageContext();
 ServiceContext sc = messageContext.getServiceContext();
 ��� Object previousValue = sc.getProperty(«VALUE»);
 int previousIntValue = 0;
 if (previousValue != null) {
 previousIntValue = Integer.parseInt((String)previousValue);
 }
 int currentValue = previousIntValue + value;
 sc.setProperty(«VALUE»,»» + currentValue);
 return currentValue;
 }
}

Now let's use the following code to invoke the service. As you can see, we have
engaged an addressing module, but have not done anything to manage the sessions.

ServiceClient sc = new ServiceClient();
 sc.engageModule("addressing");
 Options opts = new Options();
 opts.setTo(new EndpointReference(
 "http://127.0.0.1:8080/axis2/services/MyService"));
 opts.setAction("urn:add");
 sc.setOptions(opts);
 OMElement ele = sc.sendReceive(createPayLoad(10));
 System.out.println(ele.getFirstElement().getText());
 ele = sc.sendReceive(createPayLoad(10));
 System.out.println(ele.getFirstElement().getText());

Chapter 10

[133]

The createPayLoad method is shown below:

public static OMElement createPayLoad(int intValue) {
 OMFactory fac = OMAbstractFactory.getOMFactory();
 OMNamespace omNs = fac.createOMNamespace(
 ��������������������������������� ����"http://ws.apache.org/axis2", "ns1");
 �� OMElement method = fac.createOMElement(«add», omNs);
 OMElement value = fac.createOMElement(«args», omNs);
 value.setText(«» + intValue);
 method.addChild(value);
 return method;
 }

Once we run the code we will see following output on the client side:

10

10

This means that though we have invoked the service twice, we have got the same
output, which simply means that no session has taken place. So now, let's change our
client code a bit and see what we get. Just add the following line of code and run the
client again:

 opts.setManageSession(true);
 sc.setOptions(opts);

Now you should see the following output on the client side:

10

20

This simply tells us that we have invoked the service in a session-aware manner.

Transport Session Scope
In the case of Transport Session, Axis2 uses transport-related session management
techniques to manage session. As an example, in the case of HTTP, it uses HTTP
cookies to manage session. Then the lifetime of the session is controlled by the
transport session and not by Axis2. What Axis2 does is store service context and
ServiceGroupContext in the transport session object so that the service can access
those contexts, as long as the session lives.

One of the key advantages that the Transport Session has over other sessions is
that we can talk to multiple service groups within one transport session. In a SOAP
session, we don't have a way to communicate between two service groups, but with
the transport session, we have that capability too. In this case, the number of service
instances created depends on the number of transport sessions created.

Session Management

[134]

Deploying a service in transport session requires changing services.xml
as follows:

<service name="MyService" scope=" transportsession">
</service>

Now, let's change our previous sample to have the scope as transport, and redeploy
the service. Then, let's try to invoke the service in following ways:

Option 1: Using the browser
http://localhost:8000/axis2/services/MyService/add?value=10

If we keep on typing this, that then we will get the output as 10, 20, 30 etc.

Option 2: Using ServiceClient

When we use ServiceClient and set the session management flag to true, it will
send the transport cookie back, as well.

ServiceClient sc = new ServiceClient();
 Options opts = new Options();
 opts.setTo(new EndpointReference(
 "http://127.0.0.1:8000/axis2/services/MyService"));
 opts.setAction("urn:add");
 opts.setManageSession(true);
 sc.setOptions(opts);
 OMElement ele = sc.sendReceive(createPayLoad(10));
 System.out.println(ele.getFirstElement().getText());
 ele = sc.sendReceive(createPayLoad(10));
 System.out.println(ele.getFirstElement().getText());

If we run the above code, we will see the following outcome:
10

20

This simply tells us that we have successfully invoked the service, which has been
deployed in the Transport Session in a session-aware manner. In this case, we do not
need to have an addressing module.

Application Scope
Application scope has the longest lifetime as compared to all the others, and the
lifetime of the application session is equal to the lifetime of the system. If we deploy a
service in application scope, we will find that there is only one instance of the service
implementation class. In addition to that, there will be only one ServiceContext for the
deployed service. Considering the memory footprint, in the Axis2 world, it is better to
deploy the service in application scope, if we don't want to manage the session.

Chapter 10

[135]

When we deploy a service in application scope, a client does not need to send any
additional data to use the same session.

To deploy a service in application scope, we need to change axis2.xml
as shown below:

<service name="foo" scope=" application">
</service>

Managing Session Using ServiceClient
As we know by now, managing session in the client side is bit of a work. As
mentioned earlier, both in SOAP session and Transport Session, a client has to send
the session-related data if it wants to live in the same session. The client can also
do that for a SOAP session by copying the required reference parameters. But in
Transport Session, how can a user get access to copy and send cookies?

To make life easier, Axis2 has the inbuilt ability to manage sessions in the client
session, by just setting a flag (which we have used already). Then, depending on the
service-side session, it sends the corresponding data as long as we continue to use
the same ServiceClient. So the main requirement is to use the same service client
to invoke the service, if you want to live in the same session.

If we want to live in the same session, then we can create ServiceClient as shown
below and re-use the service client object created to invoke the service.

Options options = new Options();
options.setManageSession(true);
ServiceClient sender = new ServiceClient();
sender.setOptions(options);

Once we create ServiceClient as shown above, and the service is deployed in
SOAP session, the ServiceClient will copy the serviceGroupId, and send that
from the second invocation. If the server sends the session ID, like web cookies, it
will copy that to ServiceContext (on the client side) and send it back to the server
when the client invokes the service for the second time.

Summary
Stateless nature is one of the main characteristics of Web Services, but it is also a
limitation for advanced Web Service developers. Developing an enterprise-level
application using Web Services is not easy unless we have a session management
layer. Axis2 has four types of sessions to address enterprise-level Web Service
development issues.

Contract First or Code First
When it comes to Web Service development, especially at the server side, there are
two main approaches for creating a service. The first approach starts from a contract.
In this context, the contract is nothing but WSDL. The second approach starts from
code, and makes a service out of that; the POJO approach is a commonly used
mechanism in the code first approach. Each approach has its own advantages and
disadvantages. When considering the two approaches, some may argue that the
code-first approach is the best, while some others may argue that the contract-first
approach is the best. When it comes to complex systems, contract approach is the
best, while the code-first approach would be the best in the development stage, and
for small applications. In the meantime, if we have a legacy system that we are going
to convert to a Web Service, then we have to use the code-first approach.

Introduction
In this chapter, we will discuss the above approaches and their use in an appropriate
manner. First, we will start with the code-first approach and discuss how to make a
Web Service out of our code. We have already discussed how to make a Java class
into a Web Service (POJO-based). After the code-first approach, we will be focusing
on the contract-first approach and how Axis2 supports that.

Code-First Approach
In this approach, we start the Web Service development from the code. We first
design what we are going to do and then just convert our design into code. So
when we use this approach, we do not need to know much about Web Service
technologies. Most importantly, you need to know neither about WSDL nor about
SOAP. So the code-first approach is a powerful tool for developers who want to
write a Web Service without having a very good understanding about it. And that
helps in bringing new users to the landscape of Web Services.

Contract First or Code First

[138]

One of the advantages of using the code-first approach is having fewer restrictions.
In simple words, if we have a contract, then we have restrictions over the method
signatures, return types, and so on. In this case, we can write code with a high level
of freedom. Even changing and adding new functionality is not a big deal. Since we
have the code, we can change it appropriately so that it suits the requirements.

In Axis2, we have very good support or equal support for the code-first approach. It
includes almost all the components that the code-first approach requires. We know
that Web Service communications takes place through SOAP. However, when we
write the code, we need not worry about the wire format. The code-first approach
class will appear as follows:

public Foo getFoo(String foo){
return new Foo();
}

In this particular case, there should be a mechanism for converting the message
payload (SOAP body) to a String object. We also need to convert the Foo object into
a response payload. To have better support for the code-first approach, Axis2 has
built-in message receivers. These message receivers are based on Java reflection,
which knows how to serialize XML to Object and deserialize Object to XML.
RPCMessageReceiver is one of the message receivers that does the job for in-out
MEP, while the RPCInOnlyMessageReceiver handles in-only MEP. In addition
to that, both the message receivers are capable of serializing objects to either a
literal wrapped-style document, or to a literal bare-style document. Similarly, it
can deserialize a payload to a Java object in either (doc-lit wrapped or doc-lit bare)
format. If you do not like the way in which Axis2 does the type mapping then you
can change that just by writing a message receiver.

In the case of the code-first approach, the key steps for making a code into Web
Service are as follows:

Firstly, we need to write the code for the Web Service that will be exposed.
There should be a single Service implementation class. But we can have any
number of utility classes and bean classes.
Then we need to write a custom message receiver if we are not using Axis2
built-in message receivers.
The next step is to write the services.xml file indicating our configurations.
And these configurations include a method that needs to be exposed and
unexposed with corresponding message receivers and other parameters.
Compile the project.

•

•

•

•

•

Chapter 11

[139]

Finally, we need to create a service archive file. Creating a service archive file
can be easily done with the tools provided by Axis2 that includes Eclipse as
well as IntelJ Idea plugins.
As the last step, we need to deploy the service.

We know how to create and deploy a service as we have already discussed these
things in previous chapters. You can go through Axis2 deployment mechanisms and
Axis2 service creation for reference.

The most important thing with the code-first approach is that we start without
having a WSDL, or service description document in our hand. But when we
deploy the service in Axis2 or when we do ? wsdl on our service, we get a WSDL
document. So if a client tries to access the service, he or she will not be able to
guess whether this service was developed by using the code-first approach or the
contact-first approach.

Changing or providing new functionality is just a matter of changing the service
implementation class and re-deploying the service. When we discussed Axis2
service, we wrote a very basic service. But in order to get a proper understanding
of the concept, we need to write a complex service so as to get a feel, and know the
power the code-first approach.

The code-first approach can be employed in a situation where we need to write
a prototype or when we want to generate a Web Service contract from our code.
Writing code and getting WSDL generated by Axis2 is faster than writing a WSDL
file. Axis2 has an built-in tool called Java2WSDL to create a WSDL document from a
Java class, or you can use IDE plugins as well.

Why Not the Code-First Approach?
Usually while developing Web Services, developers like to code the business
logic first and then expose that logic as a Web Service. Developers find this a
more convenient approach, since they are already competent in the programming
languages they use, without having to learn the intricacies of Web Services. It
happens to be more convenient in exposing existing programs as Web Services.
However, the code-first approach has the following drawbacks:

The control that a developer has over exposing the code as a Web Service is
less. A change to the code may mean a regeneration of the publicly visible
Web Services interface, and often it is difficult to agree on such a generated
interface, from a business perspective. The client programs are often
generated using the service's WSDL file. If the service WSDL file is likely to
change, the point of having generated clients becomes less obvious.

•

•

•

Contract First or Code First

[140]

The code for the service process is likely to change between service
frameworks and even framework versions, and it becomes difficult to
maintain a single interface across versions.

When it comes to annotation, it is true that by using annotations (JSR 181), the impact
of some of these issues can be reduced. Annotations help the developers to take
control of the process of exposing code. However, there is no such thing as a generic
annotation scheme to make it universally applicable over multiple languages and
multiple frameworks.

Contract-First Approach: Why is it So
Special?
As opposed to code first, the contract-first approach takes the contract as the
primary artifact. The "contract" in a Web Service interaction is the WSDL document.
Therefore, in the contract-first approach, the focus is on creating the WSDL file
and the associated XML schema. The WSDL file and the schema clearly define the
message formats, the operation, the interface names, and other relevant information
for a complete Web Service interaction, and can be agreed on by multiple parties.
Almost all major Web Service frameworks allow service generation from WSDL, and
it becomes easier for the service implementer as well. The reason is that if a major
portion of the code is generated, only the necessary business logic will need to be
filled in.

We have discussed the problems associated with the code-first approach. But there
are some problems with the contract-first approach as well, the most notable one
being the need for WSDL and schema expertise. One can argue whether the Web
Service implementers would need to do anything with WSDL since the primary
requirement of the WSDL is to provide a description of the service rather than to
provide the service itself. This would have been a major problem in earlier times, but
now, some very good visual tools are available, both free and commercial, allowing
easy construction of WSDL. Axis2 also has a set of tools to generate code from a
WSDL document.

Code-Generation Support in Axis2
The Apache Axis2 project comes bundled with a convenient code-generator tool.
This code generator allows multiple data-binding frameworks to be incorporated,
and is easily extensible.

•

Chapter 11

[141]

In its simplest form, the code generator is a command-line tool. It also comes in other
flavors such as the Eclipse or IDEA plug-in or the custom Ant task. However, these
use the same tool to generate code and the options available are the same. All the
examples in this chapter use the command-line tool, but the graphical equivalent is
easy to figure out and can be used appropriately.

The batch or shell scripts for the code-generator tool are available in the bin
directory of the Axis2 binary distribution [axis2-1.3-bin.zip, 17 MB]. Once the
standard Axis2 distribution is downloaded and unzipped, the scripts are ready for
action. If you are having problems running the tools, try to follow the installation
procedure properly, or you can refer to the Axis2 site. It has a great deal of up-to-date
documentation about installing Axis2, seting up the classpath, and more.

Sample 1: Use Default Code-Generation
Options to Generate Server-Side Code
To generate server-side code from WSDL, you have to provide the -ss (--server-
side) and -sd (--service-descriptor) flags to the code generator. The '-ss' flag
indicates whether it is server-side code. But, it is recommended to use the '-sd' flag
along with the '-ss' flag, as the service cannot be deployed without a service descriptor
in Axis2. In addition, you can also specify the output location using the '-o' option.

Go to the bin directory of the Axis2 binary distribution, and run either the batch
or the shell file. The WSDL files are available in the samples/wsdl directory. The
following command generates server-side code with default options:

>wsdl2java.bat -uri ..\samples\wsdl\Axis2SampleDocLit.wsdl -o skel
 -ss -sd

The above sample is based on the Windows environment. So, you can see the batch
file as well as the Windows-specific path.

Then, the code will generate under the bin/skel directory, as we have given the
output location as skel. Three artifacts will be visible in the output location
(bin/skel in this case) immediately after the code generation:

1.	build.xml

2.	src directory
3.	resources directory

Inside the src directory, the source files (service skeleton) are available inside the
org\apache\axis2\userguide\axis2sampledoclit directory, as it takes the default
package when nothing is specified. The most interesting item here is the generated
skeleton. This skeleton is meant for the service implementer to fill in and is the only
piece of code that needs to be modified in order to have a successful service.

Contract First or Code First

[142]

The resources directory contains two files: the WSDL file for the service, and the
services.xml file (depending on the WSDL, there would also be mutiple files
such as schema files). These files need to go into the META-INF directory of the aar
file. The skeleton will be named Axis2SampleDocLitServiceSkeleton to match
the service name. For each operation in WSDL, a corresponding method will be
generated in the skeleton class.

The following code snippet shows an implementation of the skeleton for only one
method the (generated skeleton has three methods):

public class Axis2SampleDocLitServiceSkeleton {
 public org.apache.axis2.userguide.xsd.EchoStringReturn echoString(
 org.apache.axis2.userguide.xsd.EchoStringParam
echoStringParam) {
 EchoStringReturn response = new EchoStringReturn();
 response.setEchoStringReturn(echoStringParam.
getEchoStringParam());
 return response;
 }

 public org.apache.axis2.userguide.xsd.EchoStringArrayReturn
echoStringArray(
 org.apache.axis2.userguide.xsd.EchoStringArrayParam
echoStringArrayParam) {
 throw new java.lang.UnsupportedOperationException("Please
implement " + this.getClass().getName() + "#echoStringArray");
 }
 public org.apache.axis2.userguide.xsd.EchoStructReturn echoStruct(
 org.apache.axis2.userguide.xsd.EchoStructParam
echoStructParam) {
 throw new java.lang.UnsupportedOperationException("Please
implement " + this.getClass().getName() + "#echoStruct");
 }
}

Once the skeleton is implemented, the recommended way to generate the service
archive is to use the Ant build file. While it is certainly possible to do the archive
creation manually, the Ant build is very convenient and it is very helpful
to developers.

Run the Ant build file by typing 'ant'. Note that, for the Ant build to succeed,
you should have the AXIS2_HOME environment variable set to point to the Axis2
installation location.

Once we generate the service aar file, we can test the service by deploying that to a
running Axis2 instance.

Chapter 11

[143]

Sample 2: Use a Different Databinding
Axis2 allows the use of different data-binding frameworks for code generation. Axis2
has support for a number of data-binding options as well, and for this, we'll try to
use XMLBeans. When we do not specify the databinding framework, code will be
generated using Axis2 default, which is ADB.

The following command generates server-side code by using XMLbeans for the
databinding. Note that the earlier generated artifacts (if they are still there) need to
be manually removed, since the code generator does not overwrite existing files:

>wsdl2java.bat -uri ..\samples\wsdl\Axis2SampleDocLit.wsdl -o skel -ss
-sd -d xmlbeans

The immediately noticeable change among the artifacts is the presence of some more
files in the resources and src directories. In this case, the XMLBeans-specific binary
file set (with the extension xsb) is available in the resources directory.

The skeleton is very similar to the one in sample 1, except that it has
XMLBeans-specific classes in the skeleton and not ADB classes. Filling the skeleton is
almost the same as in sample 1.

We can see that the skeletons have a strong resemblance to each other even though
the underlying data-binding mechanism has changed completely. All the issues
related to databinding are handled under the hood, and the service implementation
would not need to worry about anything other than filling in the business logic.

The importance of using the Ant build file for making the aar file becomes clear
while using XMLBeans. The XMLBeans databound classes require the .xsb files to
be in the classpath, and the generated Ant build comes with targets that copy these
non-class files to the appropriate locations.

Sample 3: Generate an Interface Instead of a
Concrete Class
There are instances where the service developers have an interface for the skeleton,
and then they name a particular service implementation for the configuration. This
can easily be done with Axis2 by using the '-ssi' (server-side interface) flag:

>wsdl2java.bat -uri ..\samples\wsdl\Axis2SampleDocLit.wsdl -o skel
 -ss -sd -ssi

This code causes the emitter to emit an interface in place of a concrete class. Of
course, the concrete class is also generated, but it is not referenced inside the message
receiver. Instead, the interface is used, and the user is free to place any class that
implements that interface as the service class.

Contract First or Code First

[144]

If you have a different implementation, then you need to update the following
parameter in services.xml:

<parameter name="ServiceClass">org.apache.axis2.userguide.
axis2sampledoclit.Axis2SampleDocLitServiceSkeleton</parameter>

Sample 4: Generating Client-Side Code
When it comes to the code-generation tool compared to server-side code-generation,
client-side code-generation has more usage. The main reason is that we have a
remote WSDL document, and we need to write client code to invoke the service. In
that case, we need to have a tool for generating client-side code or a stub (service
proxy). Now, let us try to generate the client-side code for the same WSDL. In this
case, we can use the following option (no need to have any of the '-ss', '-sd' flags in
this case):

>wsdl2java.bat -uri ..\samples\wsdl\Axis2SampleDocLit.wsdl -o stub

When we run the above code, we will find the stub Java class under
src\org\apache\axis2\userguide\axis2sampledoclit called
Axis2SampleDocLitServiceStub.java. If you open the stub class, you will find
it very difficult to read. You don't have to try to read it; unlike in the case of the
skeleton, we are not going to edit the stub. Rather we will use the stub to invoke a
remote service. The stub has all the service invocation logic, such as address, SOAP
action and so on. Now, let us see how to write client-side code to invoke a service by
using the generated stub.

Axis2SampleDocLitServiceStub stub = new
Axis2SampleDocLitServiceStub();
 Axis2SampleDocLitServiceStub.EchoStringParam request =new
 Axis2SampleDocLitServiceStub.EchoStringParam();
 request.setEchoStringParam("Hello");
 Axis2SampleDocLitServiceStub.EchoStringReturn response =
 stub.echoString(request);

As we have discussed, the '-d' option is applicable here as well, to generate the client
based on different databinding framework we can use the '-d' option with the name
of the data-binding framework that we want.

One other interesting tweak to code generation is generating both server-side
and client-side code in a single shot. This can be achieved using the '-g' flag. The
generated code will contain the skeleton as well as the stub and will be useful during
code generation.

Chapter 11

[145]

The Axis2 code-generation tool has a number of configuration options, which are
listed below. We can make use of them when we generate code using Axis2.

-o <path>: Specify a directory path for the generated code.

-a: Generate async-style code only (Default: off).

-s: Generate sync-style code only (Default: off). Takes precedence over -a.

-p <pkg1>: Specify a custom package name for the generated code.

-l <language>: Valid languages are java and c (Default: java).

-t: Generate a test case for the generated code.

-ss: Generate server-side code (such as skeletons) (Default: off).

-sd: Generate service descriptor (such as services.xml). (Default: off). Valid with
-ss.

-d <databinding>: Valid databinding(s) are adb, xmlbeans, jibx, jaxme and jaxbri
(Default: adb).

-g: Generates all the classes. Valid only with -ss.

-pn <port_name>: Choose a specific port when there are multiple ports in the WSDL.

-sn <service_name>: Choose a specific service when there are multiple services in the
WSDL.

-u: Unpacks the data-binding classes.

-r <path>: Specify a repository against which code is generated.

-ns2p ns1=pkg1,ns2=pkg2: Specify a custom package name for each namespace
specified in the WSDL's schema.

-ssi: Generate an interface for the service implementation (Default: off).

-wv <version>: WSDL Version. Valid Options: 2, 2.0, 1.1

-S: Specify a directory path for generated source.

-R: Specify a directory path for generated resources.

-em: Specify an external mapping file.

-f: Flattens the generated files.

-uw: Switch on un-wrapping.

Contract First or Code First

[146]

-xsdconfig <file path>: Use XMLBeans .xsdconfig file. Valid only with -d xmlbeans.

-ap: Generate code for all ports.

-or: Overwrite the existing classes.

-b: Generate Axis 1.x backward compatible code.

-sp: Suppress namespace prefixes (Optimization that reduces size of SOAP request or
response)

-E<key> <value>: Extra configuration options specific to certain databindings.

-Ebindingfile <path> (for jibx): Specify the file path for the binding file.

-Etypesystemname <my_type_system_name> (for xmlbeans): Override the
randomly generated type system name.

-Emp <package name> (for ADB): Extension mapper package name.

-Eosv (for ADB): Turn off strict validation.

--noBuildXML: Do not generate the build.xml file in the output directory.

--noWSDL: Do not generate WSDL in the resources directory.

--noMessageReceiver: Do not generate a MessageReceiver in the generated sources.

Summary
The code-first approach is very handy for most of the Web Service applications,
since it helps to bring code to a Web Service easily. The contract-first approach is a
better way when it comes to implementing Web Services. Fortunately, Axis2 has a
flexible code generator that supports contract-first development in a very
convenient manner.

Advanced Topics
In the previous chapters, we discussed how to install Axis2, write a simple Web
Service, write a simple module, invoke a Web Service, and so on. In this chapter, we
will discuss some more advanced features of Axis2.

REST—Representational State Transfer
REST is a term introduced by Roy Fielding in his Ph.D. thesis to describe an
architectural style of networked systems. The motivation behind REST was to
capture the characteristics of the Web that in turn made it successful. Subsequently,
these characteristics are being used to guide the evolution of the Web. REST is
not a standard, but it is an architectural style, which accounts for the fact that you
cannot find any specification in W3C. We can understand REST and design our Web
Services using its style.

Features of REST
The Web comprises many resources. A resource can be any item that holds some
interest. For example, the Boeing Aircraft Corporation defines a resource for its 747
line of aircraft. Clients can access that particular resource with the following URL:

http://www.boeing.com/commercial/747family/

After clicking the link, a representation of the resource is returned (for example
Boeing747.html). The representation sets the client application in a state. The
result of the client traversing a hyperlink in Boeing747.html is its access to another
resource. The new representation sets the client application in yet another state. Thus,
the client application changes (transitions) state with each resource representation
that is accessed. As a result, we have Representational State Transfer.

Advanced Topics

[148]

Here is Roy Fielding's explanation for the meaning of Representational
State Transfer:

"Representational State Transfer is intended to evoke an image of how a
well-designed web application behaves: a network of web pages (a virtual
state-machine) where the user progresses through an application by selecting
links (state transitions), resulting in the next page (representing the next state
of the application) being transferred to the user and rendered for their use."

The Web is a REST system. Web Services such as book-ordering services, search
services, online dictionary services, and so on, are REST-based Web Services.

REST Services in Axis2
When it comes to Axis2 REST support, the service author does not need to take any
additional steps in order to add REST support to the service. Any service deployed
in Axis2 gets REST support by default. Even in an auto-generated WSDL file, you
can see the HTTP (REST) binding for both WSDL 1.1 and WSDL 2.0. Here, it should
be noted that with WSDL 2.0, you get a number of additional configuration support
options as compared to WSDL 1.1.

A service deployed in Axis2 can be accessed through an HTTP POST or a GET
request. However, in the case of GET, you have to send the request as URL
parameters. As a result of the limitations, you may not be able to invoke a given Web
Service using the HTTP GET method. As an example, if the Web Service method
takes a complex value as its method parameter, then the HTTP GET method cannot
be used. Therefore, a service similar to the one given here cannot be accessed by
using the HTTP GET method.

public String getName(Man man) {
}
However, a service like the following can be easily accessed using the
HTTP GET method.

public String getName(String id , int age){
}

To invoke the above service, you can send the request in the following manner:

http://localhost:8080/axis2/services/ServiceName/getName?id=ID&age=10

Unlike in the HTTP GET method, there are no limitations in the HTTP POST
method. You can send the request as an encoded URL, or as a request body (in a
POX message). While sending the message as the request body with the HTTP POST
method, you only send the SOAP body.

Chapter 12

[149]

You can use any of the given HTTP clients in order to invoke a Web Service that is
hosted in Axis2 using the REST manner, that is, by using either the GET method or
the POST method. But as we discussed earlier, it depends on the method signature
of the Web Service operation, and on which method we use, the GET method or the
POST method. You can even use ServiceClient to invoke a remote service in the
REST manner (with either GET or POST). The following code demonstrates invoking
a service in the REST manner using the POST method:

ServiceClient client = new ServiceClient();
Options opts = new Options();
opts.setTo(new EndpointReference("address of the service "));
opts.setAction("soap action ");
opts.setProperty(Constants.Configuration.ENABLE_REST, Boolean.TRUE);
client.setOptions(opts);
OMElement res = client.sendReceive(createPayLoad());

While invoking the above code, if you send the request via a TCP monitor, you will
see that it only sends the request payload (only the SOAP body). As a result, you will
get the payload for the response as well.

To send the request as a GET request, you need to set the following flag:

opts.setProperty(Constants.Configuration.HTTP_METHOD_GET,
Boolean.TRUE);

This, in turn will send the request in URL-encoded format (if it can be URL encoded).

MTOM—Message Transmission
Optimization Mechanism
Regardless of the flexibility, interoperability, and global acceptance of XML, there are
times when serializing data into XML does not make much sense. Web Service users
may require transmission of binary attachments of various types such as images or
drawings as XML docs together with a SOAP message. Such data is often available in
a particular binary format.

The following two traditional approaches deal with sending the binary data in XML:

1.	 By Value
Sending binary data by value is achieved by embedding opaque data (after
some form of encoding has taken place) as an element, or an attribute content
of the XML component of data. The main advantage of this technique is that
it gives applications the ability to process and describe data that is based only
on the XML component of the data. XML supports opaque data as content by

Advanced Topics

[150]

the use of either base64 or hexadecimal text encoding. Unfortunately, both
these techniques expand the size of the data. For underlying text encoding
of UTF-8, base64 encoding increases the size of the binary data by a factor of
nearly 1.33 times its original size, while hexadecimal encoding expands data by
a factor of about 2. The above factors will be doubled if UTF-16 text encoding is
used. Another concern is the processing costs (both real and perceived) of these
formats, especially when decoding back into raw binary data.

2.	 By Reference
Sending binary data by reference is achieved by attaching pure binary data
as external unparsed general entities outside the XML document, and then
embedding reference URIs to those entities as elements or attribute values
in the XML. This prevents unnecessary expansion of data and waste of
processing power. The primary obstacle in using these unparsed entities is
their heavy reliance on DTDs, which impedes modularity and the use of XML
namespaces. There were several specifications introduced in the Web Services
world to deal with this binary attachment problem using the 'by reference'
technique. SOAP with Attachments (SwA) is one such example. Since SOAP
prohibits document type declarations (DTD) in messages, this leads to the
problem of not representing the data as part of the message infoset, thereby
creating two data models. This scenario is similar to sending attachments
with an email message. Even though these attachments are related to the
message content, they are not contained within the message. This causes the
technologies that process and describe the data based on the XML component
of the data to malfunction. One such example is WS-Security.

MTOM is another specification that focuses on solving the 'attachments' problem.
MTOM tries to leverage the advantages of the above two techniques by attempting to
merge them. MTOM is clearly a 'by reference' method. The wire format of a MTOM
optimized message is the same as a SOAP with Attachments message that makes
it backward compatible with SwA endpoints. The most notable feature of MTOM
is the use of the XOP:Include element that is defined in the XML Binary Optimized
Packaging (XOP) specification so as to refer to the binary attachments (external
unparsed general entities) of the message. By the use of this element, the attached
binary content logically becomes inline (by value) with the SOAP document, even
if it is attached separately. This merges the two areas by making it possible to work
with only one data model. This allows the applications to process and describe the
data by just looking at the XML part, making the reliance on DTDs obsolete.
On another note, MTOM has standardized the referencing mechanism of SwA.
Axis2 supports Base64 encoding, SOAP with Attachments, and MTOM.

Chapter 12

[151]

AXIOM is an object model that has the ability to hold binary data. It has this ability
since OMText can hold raw binary content in the form of a javax.activation.
DataHandler class. OMText has been chosen for this purpose for two reasons. One
is that XOP (MTOM) is capable of optimizing only base64-encoded Infoset data that
is in the canonical lexical form of the XML Schema base64Binary datatype. Another
is to preserve the infoset in both the sender and the receiver (to store the binary
content in the same kind of object regardless of whether it is optimized or not).
MTOM allows you to selectively encode portions of the message, which facilitates
the sending of base64-encoded data, and externally attaches raw binary data that is
referenced by the 'XOP' element (optimized content) to be sent in a SOAP message.
You can specify whether an OMText node that contains raw binary data or
base64-encoded binary data is qualified to be optimized at the time of construction
of that node, or later. For optimum efficiency of MTOM, a user is expected to send
smaller binary attachments by using base64-encoding (non-optimized) and larger
attachments as optimized content.

OMElement imageElement = fac.createOMElement("image", omNs);

//Creating the Data Handler for the file. Any implementation of
//javax.activation.DataSource interface can fit here.
javax.activation.DataHandler dataHandler = new javax.activation.
DataHandler(new FileDataSource("SomeFile"));

//create an OMText node with the above DataHandler and set optimized
//to true
OMText textData = fac.createOMText(dataHandler, true);
imageElement.addChild(textData);

//User can set optimized to false by using the following
//textData.doOptimize(false);

Also, a user can create an optimizable binary content node by using a
base64-encoded string that contains encoded binary content, given with the MIME
type of the actual binary representation.

String base64String = "some_base64_encoded_string";
OMText binaryNode =fac.createOMText(base64String,"image/jpg",true);

Axis2 uses javax.activation.DataHandler to handle the binary data. If MTOM
is not enabled, all the optimized binary content nodes will be serialized as Base64
strings. You can also create binary content nodes, which will not be optimized in any
case. These will be serialized and sent as Base64 strings. Refer to the following code:

//create an OMText node with the above DataHandler and set "optimized"
//to false
//This data will be sent as Base64 encoded strings regardless of
//whether MTOM is enabled or not

javax.activation.DataHandler dataHandler = new javax.activation.
DataHandler(new FileDataSource("SomeFile"));
OMText textData = fac.createOMText(dataHandler, false);
image.addChild(textData);

Advanced Topics

[152]

MTOM on the Client Side
To enable MTOM on the client side, you need to set the EnableMTOM property to
True in the options object while sending messages.

ServiceClient serviceClient = new ServiceClient ();
Options options = new Options();
options.setTo(targetEPR);
options.setProperty(Constants.Configuration.ENABLE_MTOM,
 Boolean.TRUE);
serviceClient.setOptions(options);

When this property is set to True, any SOAP envelope, regardless of whether it
contains optimizable content or not, will be serialized as an MTOM optimized
MIME message.

Axis2 serializes all binary content nodes as Base64-encoded strings regardless of
whether they are qualified to be optimized or not.

The following code demonstrates getting binary data as the Web Service response:

ServiceClient sender = new ServiceClient();
Options options = new Options();
options.setTo(targetEPR);
// enabling MTOM
options.set(Constants.Configuration.ENABLE_MTOM, Boolean.TRUE);

OMElement result = sender.sendReceive(payload);
OMElement ele = result.getFirstElement();
OMText binaryNode = (OMText) ele.getFirstOMChild();

//Retrieving the DataHandler & then do whatever processing required to
//the data
DataHandler actualDH;
actualDH = binaryNode.getDataHandler();

MTOM on the Service Side
The Axis2 server automatically identifies incoming MTOM optimized messages
based on the content-type and de-serializes them accordingly. The user can enable
MTOM on the server side for outgoing messages.

Chapter 12

[153]

To enable MTOM globally for all services, users can set the EnableMTOM parameter to
True in axis2.xml. When it is set, all outgoing messages will be serialized and sent
as MTOM optimized MIME messages. If it is not set, all the binary data in the binary
content nodes will be serialized as Base64-encoded strings. This configuration can be
overriden in services.xml on the basis of each service and operation.

<parameter name="enableMTOM">true</parameter>

Note that you must restart the server after setting this parameter.

You can write a service similar to the following one in order to perform binary
data handling.

public class MTOMService {
public void uploadFileUsingMTOM(OMElement element) throws Exception {

 OMText binaryNode = (OMText) (element.getFirstElement()).
getFirstOMChild();
 DataHandler actualDH;
 actualDH = (DataHandler) binaryNode.getDataHandler();

 ... Do whatever you need with the DataHandler ...
 }

public void uploadBinary(DataHandler data) throws Exception {
 // write the code to handle the data handler
 }
 }

Axis2 ClassLoader Hierarchy
We have already discussed that any service or module deployed in Axis2 gets its
own class loader, meaning that any service or module in Axis2 is isolated. Axis2
achieves this by using its own class loader mechanisms. What is the advantage in
having different class loaders for different services? Say you have two services that
need to use two different versions of some third-party library. In this case, if you
include both versions of the third-party library, and try to use the different version
classes from those two services using a single class loader, classes will be loaded
only from one library. This is how the Java class loader works. To solve this problem,
Axis2 has introduced the aforementioned class loader mechanism.

In Axis2, a service class loader or a module class loader is created using its archive
file, that is a URL class loader will be created from the archive file. From the created
class loader, the service or module will be created, and the created class loader
will be stored in the corresponding description (in the case of a service, inside
AxisService, and in the case of a module, inside AxisModule).

Advanced Topics

[154]

Sharing Libraries Using the Class Loader
Hierarchy
With the class loader hierarchy, you can share classes across services and modules.
This is done as follows:

If you want to share some third-party libraries, then you can put those
libraries into the classpath or the lib directory of the Axis2 distribution.
Sharing some third-party libraries across a set of modules, or all of the
modules, can be done by putting those libraries into the repository/
modules/lib directory.
Sharing some third-party libraries across a set of services, or all of the
services, can be done by putting those libraries into the repository/
services/lib directory.

The following figure demonstrates the Axis2 classloader hierarchy:

According to the above figure, the Context Class Loader is the one that Axis2
gets when it is started. Then the System Class Loader will be created by adding
repository-level libraries. Subsequently, the Services Class Loader will be created
by adding service-level libraries to the System Class Loader. In the same way, a
Service Class Loader will be created by adding a service archive file to the Services
Class Loader. Similarly, a Modules Class Loader will be created by adding
module-level libraries to the System Class Loader, and then a Module Class Loader
will be created by adding the module archive file to the Modules class loader.

With this approach, a child class can access any class or property in the parent,
whereas a Module Class Loader cannot access any class or resource in a Service
Class Loader.

•

•

•

Chapter 12

[155]

Axis2 Configurator
So far, you have learned how to start Axis2 and work with Axis2, both on the client
side and the server side. But we did not discuss how the underlying logic works.
When you start Axis2, it creates an AxisConfiguration object from the local machine
that is considered as the repository. In the case of Axis2 WAR distribution, the
repository is <TOMCAT_HOME>webapps/axis2/WEB-INF (if you are using Tomcat).
So, when you start Axis2 in an application server, Axis2 automatically selects the
WEB-INF directory as the repository. This approach is known as "file system-based
AxisConfigurators", in which the Axis2 configuration is created using a file system.

In the same way, you can create an Axis2 system by using a remote location as
well, or even by using a database. In the Axis2 distribution, there is built-in support
for URL-based and file-based Axis2 configuration creation. The following code
demonstrates how to create an Axis2 system by using the file system:

ConfigurationContext configCtx = ConfigurationContextFactory.
createConfigurationContextFromFileSystem(
"E:\\urlrepo","");
 SimpleHTTPServer simpleServer = new SimpleHTTPServer
 (configCtx, 8070);
simpleServer.start();

The following code demonstrates how to create an Axis2 system by using a
URL repository.

ConfigurationContext configCtx =
ConfigurationContextFactory.createConfigurationContextFromURIs(null,
 new URL("http://urlrepo/")
);
 SimpleHTTPServer simpleServer = new SimpleHTTPServer(configCtx,
8070);
simpleServer.start();

One thing you need to remember while using a URL repository is that the services
directory must have a file named services.list, which lists all the services' archive
files. For example, if you have services named foo.aar and bar.aar, then the
services.list will appear as follows:

foo.aar
bar.aar

In the same way, the modules directory should contain a file named modules.list
that lists all the modules.

Advanced Topics

[156]

Deploying Axis2 in Various Application
Servers
As we had discussed in Chapter 1, Axis2 is available in the form of several
distributions. The application server distribution is one of them. You can download the
Axis2 application server distribution, or the WAR distribution from the Axis2 website,
or build them from the binary distribution. Once you have the WAR distribution,
deploying it is just a matter of copying the WAR file into the webapps directory of
the application server. In case of Apache Tomcat, it is the webapps folder, whereas,
in case of Sun Glassfish, it is the autodeploy folder, and so on. So, depending on the
application server, you have to figure out the correct location to place the WAR file.

There are some application servers that will unpack the WAR distribution to a
permanent location, or to a temporary location. For example, Apache Tomcat will
unpack the WAR file to a permanent location, where changes can be made. When
the application server restarts, all those changes will be available. However, there are
some application servers that do not do that. There are some application servers that
do not unpack the WAR file. Even in Apache Tomcat, you can configure whether you
want to unpack or not. Hot deployment and hot update vary depending upon the
application server configuration. For example, if the application server is not going to
unpack the WAR file, then you do not have hot deployment available.

Irrespective of the application server, you can get Axis2 to work from a custom
repository by editing the web.xml file of the Axis2.war distribution. Once this
is done, you do not need to worry whether the application server will unpack
the WAR, and if it does, where it is going to unpack it, and so on. You can even
configure the application server-based Axis2 to start with a remote repository as
well. Firstly, we will have a look at how Axis2.war is to be configured to make it
work with a local file system. Here, you need to add the following init parameters
to the servlet section of the web.xml file.

<servlet>
 <servlet-name>AxisServlet</servlet-name>
 <display-name>Apache-Axis Servlet</display-name>
 <servlet-class>org.apache.axis2.transport.http.AxisServlet</
servlet-class>
 <init-param>
 <param-name>axis2.xml.path</param-name>
 <param-value>path to custom axis2.xml (you need this only
 if you want to override the default axis2.xml)</param-value>
 <param-name>axis2.repository.path</param-name>
 <param-value>full path the custom repository</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>

Chapter 12

[157]

As mentioned earlier, you can configure the web.xml file to start Axis2 from a URL
repository as well. In such a case, you need to add the following two parameters:

<servlet>
 <servlet-name>AxisServlet</servlet-name>
 <display-name>Apache-Axis Servlet</display-name>
 <servlet-class>org.apache.axis2.transport.http.AxisServlet</
servlet-class>
 <init-param>
 <param-name>axis2.xml.url</param-name>
 <param-value>http://localhot/myrepo/axis2.xml</param-value>
 <param-name>axis2.repository.url</param-name>
 <param-value>http://localhot/myrepo</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

Summary
In this chapter, we have discussed a number of advanced features of Axis2 along
with samples. REST and MTOM are very useful in the context of Web Services. You
can use REST as a way of optimizing the wire format of the message, and you can
use MTOM to send binary data in an efficient manner. Then, we discussed how to
create an Axis2 system using a custom repository, which may be located locally or
remotely. Finally, we discussed how to deploy Axis2 in various application servers.

We have covered most of the concepts and features of Axis2. We have discussed how
to use Axis2, both as a server and as a client. You need to keep in mind that both Web
Services and Axis2 are liable to change rapidly. So, do visit the Axis2 website often to
see the changes in the various versions, and changes in Web Services technology.

Index
A
Apache web service stack 14, 15
application scope

about 135
service, deploying 135
session managing, ServiceClient used 135

application server
Axis2, deploying 156, 157

asynchronous invocation
about 111, 112
service, utilizing 112

AXIOM
about 21, 151
advanced operations 40
advantages, over XML 21
creating 33
creating, from input stream 34, 35
creating, programmatically 35, 36
creating, string used 35
features 31
overview 31
PULL parser technique 21
pull parsing 32
SOAP 42

AXIOM, advanced operations
AXIOM and SOAP 42
OMNavigator, using for traversing 40, 41
pull parser, accessing 42
Xpath navigation, using 41

AXIOM, architecture 32
AXIOM, features

deferred building 32
lightweight 31
pull-based 32

AXIOM, working with
advancd operations 40
attributes, adding 36

AXIOM, creating 33
AXIOM, creating from input stream 34, 35
AXIOM creating, programmatically 35, 36
AXIOM creating, string used 35
AXIOM tree, creating 38
AXIOM tree, traversing 38
child node, adding 36
namespaces, serializating 39
OM namespaces, working with 37, 38
serialization 38
SOAP 42

Axis2
AXIOM 21
class loader hierarchy 153
client API 112
code first approach 138
configuration files 63
configurator 155
context hiearchy 127
contract first approach 140
core modules 20
deploying, in application server 156, 157
deployment descriptors 63
deployment model 59
deployment options 65
flows 54
functionalities extending 28
handler 45, 46
handler, writing 46, 47
message receiver 57
MTOM 149
need for 15
other modules 27
phase 48
REST 147
rules for designing 19
runtime data and static data, differences 80

[160]

service deploying, service archive file
used 87

session, types 126, 127
session scopes 127
stateless nature 126
static data 71

Axis2, architecture 19
core modules 20
other modules 27

Axis2, functionalities extending
custom deployers 29
message receivers 29
module 28
service extension of module 28

Axis2 client API
about 112
OperationClient API 122, 123
ServiceClient API 113

Axis2 configurator 155
Axis2 contexts

ConfigurationContext 80
MessageContext 82
OperationContext 81
ServiceContext 81
ServiceGroupContext 81

Axis2 deployment model
about 59
archive file, internal structure 60
deployment options 65
handler deploying ways, changing 62, 63
hot deployment 61
hot update 61
J2EE-like deployment mechanism

(archive based) 60
module, deploying as archive file 63
module archive file, structure 63
repository 62

Axis2 Object Model. See AXIOM
Axis2 release

downloading 16
installing 16

Axis2 stateless nature 126
Axis2 static data

AxisConfiguration 73
AxisConfiguration creating, axis2.xml file

used 73, 74
MessageBuilders 76

MessageFormatters 76
parameters 75
runtime data 79
TransportReceiver 76
TransportSender 76

Axis2 system
creating, file system used 155
creating, URL repository used 155

AxisConfiguration 73
AxisMessage, service description

hierarchy 79
AxisModule 77
AxisOperation, service description

hierarchy 78
AxisService, service description

hierarchy 78
AxisServiceGroup, service description

hierarchy 78

B
benefits, web services 8
binary distribution 17
blocking invocation. See synchronous

invocation

C
class loader hierarchy

about 153
context class loader 154
demonstrating 154
libraries, sharing 154
module class loader 154
modules class loader 154
service class loader 154
services class loader 154
system class loader 154

client API. See also Axis2 client API
about 20, 25
FireAndForget, ServiceClient API 25
operationClient API 26
SendReceive, ServiceClient API 25
SendReceiveNonBlocking, ServiceClient

API 25
sendRobust, ServiceClient API 25
ServiceClient API 25

[161]

code first approach
about 83, 137
advantages 138
drawbacks 139, 140

code first approach, service
POJO with class, having package

name 86, 87
single class POJO approach 84, 85

code generation, Axis2
about 27, 84, 140, 141
client-side code, generating 144
configuration options 145
different databinding framework,

using 143
interface, generating 143, 144
server-side code, generating 141, 142

configuration options, code generation tool
--noBuildXML 146
--noMessageReceiver 146
--noWSDL 146
-a 145
-ap 146
-b 146
-d <databinding> 145
-E<key> <value> 146
-Ebindingfile <path> (for jibx) 146
-em 145
-Emp <package name> (for ADB) 146
-Eosv (for ADB) 146
-Etypesystemname <my_type_system_

name> (for xmlbeans) 146
-f 145
-g 145
-l <language> 145
-ns2p ns1=pkg1,ns2=pkg2 145
-o <path> 145
-or 146
-p <pkg1> 145
-pn <port_name> 145
-R 145
-r <path> 145
-S 145
-s 145
-sd 145
-sn <service_name> 145
-sp 146
-ss 145
-ssi 145

-t 145
-u 145
-uw 145
-wv 145
-xsdconfig <file path> 146

context hiearchy, Axis2
ConfigurationContext 127
MessageContext 128
OperationContext 128
ServiceContext 127
ServiceGroupContext 127

contexts, Axis2 79
contract first approach 84, 140
contract first approach, service

Ant build file, running 95
service code, generating 94
service skeleton class 94
WSDL, starting from 94

core modules, Axis2
Client API 25
deployment model 24
information model 23
SOAP processing model 21-23
transports 26
XML processing model 21

custom deployers 29

D
data binding

about 27
ADB framework 27
frameworks 27
JAXMe framework 27
JibX framework 27
XMLBeans framework 27

deploying, Axis2 in application server
156, 157

deployment descriptors, Axis2
about 63
global descriptor (axis2.xml) 64
module descriptor (module.xml) 65
service descriptor (services.xml) 64, 65

deployment model
about 20, 24
hot deployment concept 24
hot update concept 24

[162]

deployment options, Axis2
archive-based deployment 66
directory-based deployment 66
POJO deployment 67, 69
server, deploying 69
server, running 69
service, deploying programmatically 66

dispatch phase
AddressingBasedDispatcher 57
HTTPLocationBasedDispatcher 57
RequestURIBasedDispatcher 57
SOAPActionBasedDispatcher 57
SOAPMessageBodyBasedDispatcher 57

distribution, Axis2
binary distribution 16
JAR distribution 18
source distribution 18
WAR distribution 17

Document Type Declarations (DTD) 150
downloading, Axis2 release 16
drawbacks, code first approach 139, 140
dynamic client

constructors, for creating 114, 115
dynamic execution chain 55

E
endpoints 106
execution chain

about 56
dispatching, ways 56
dynamic execution chain 55
message receiver 57
module engagement 55
RawXMLINOnlyMessageReceiver 57
RawXMLINOutMessageReceiver 57
RPCINOnlyMessageReceiver 57
RPCMessageReceiver 58
special handlers 56
transport receiver 56
transport sender 58

F
features, REST 147, 148
flows, phase

inFaultFlow 54
inFlow 54

OutFaultFlow 55
OutFlow 55
types 54

G
global descriptor 64
global phase 50, 51

H
handler

about 45
writing, in Axis2 47

handler deploying ways, changing 62
history, web services 7
hot deployment 61
hot update 61

I
information model

about 20
context hierarchy 23
description hierarchy 23
hierarchies 23

installing, Axis2 release 16
interceptor 45
invalid phase rules 53, 54

J
J2EE-like deployment mechanism 60
JAR distribution 18

K
key rules

for designing Axis2 19

L
libraries

sharing, class loader hierarchy used 154
life cycle, web services 14

M
message receiver 57

[163]

message receiver, specifying for service
at operation level 90
at service level, for whole service 90, 91
at service level, overriding by operations

91, 92
message receivers 29
Message Transmission Optimization

Mechanism. See MTOM
model, web services

service broker 10
service provider 10
service requester 10

module
about 98
configuration file 99
deploying 107
engaging, to system 108, 109
handlers, writing in Axis2 100
implementation class 102, 103
implementation class, methods 104
module.xml file 99
module.xml file, writing 106
module archive file, structure 99
phase rules, writing 101
service archive file 99
structure 98

module.xml file. See also module
endpoints 105
endpoints, adding 106
handlers, writing in Axis2 100
parameter, accessing 102
parameter, adding 102
writing 106
WS-policy 105

module concept 98
module configuration file. See

module.xml file
module descriptor 65
module engagement 55
module implementation class

applyPolicy method 105
endpoints 105, 106
engageNotify method 104
Init method 104
methods 104
shutdown method 104
writing 102, 103

WS-policy 105
module structure. See module
MTOM

about 149-151
binary data, sending by reference 150
binary data, sending by value 149
binary data, sending in XML 149, 150
on client side 152
on server side 152, 153

N
navigator

completion state 41
creating 41
navigable state 41

non-blocking invocation. See asynchronous
invocation

O
OMElement 36
OMNamespace

working with 37
OMNavigator 41
OMNode 36
OperationClient API 122-124
operation phase 51
other modules, Axis2

code generation 27
data binding 27

overview, web services 8

P
phase, Axis2

about 48
after 53
after and before 53
before 52
definition 48
flows 54
global phase 49-51
inFlow 54
invalid phase rules 53, 54
methods 48
module engagement 56
operation phase 51

[164]

phaseFirst 52
phaseFirst handlers 48, 49
phaseLast 52
phaseLast handlers 48, 49
phase name 52
phase rules 51
phase rules, properties 51
postcondition checking method 48
precondition checking method 48
types 49

phase, types
dispatch phase 51
global phase 50, 51
operation phase 51
preDispatch phase 51
security phase 51

phase rules
after 53
after and before 53
before 52
phaseFirst 52
phaseLast 52
phase name 52
properties 51

pipes
InFlow pipe 21, 22
OutFlow pipe 21, 22

Plain Old Java Object (POJO) approach 83
pull-parser

accessing 41
pull parsing, AXIOM 32

Q
QName 38

R
repository directory, Axis2 62
Representational State Transfer. See REST
request session scope 129, 130
REST

about 147
features 147, 148
services, in Axis2 148, 149

RPCMessageReceiver 138
runtime data and static data, differences 80
runtime data hierarchy. See Axis2 contexts

S
serialization 38
serializeAndConsume() and serialize()

method, differences 39, 40
service, Axis2

code first approach 84
contract first approach 94
implementation class 89
message receiver, specifying 89
schema files 93
service archive file, creating 89
service group 92
services.xml file, writing 88
service WSDL 93
single service 92
third party resources, adding 92
WSDL file 93

ServiceClient, creating
ConfigurationContext, used 114
default constructor, used 113
dynamic client, creating 114

ServiceClient, sample
in-only MEP (fireAndForget), utilizing 121
in-only MEP (sendRobust), utilizing 121
service, creating 115, 116
service, deploying 116
service, invoking in blocking manner

(sendReceive()) 116-118
service, utilizing in non-blocking manner

(sendReceiveNonBlocking()) 118, 119
service utilizing, transports used 120, 121

ServiceClient API
ServiceClient, creating 113
ServiceClient, sample 115

service description hierarchy
about 13, 77
AxisMessage 79
AxisOperation 78
AxisService 78
AxisServiceGroup 78

service descriptor 64, 65
session

managing, ServiceClient used 135
types 126, 127

session destroy 129
session initialization 128

[165]

session management
context hierarchy 127
Java reflection 128
MessageContext, accessing 129
optional interface, using 128
ServiceClient used 135
session initialization 128

session scopes, Axis2
application scope 134
request session scope 129, 130
SOAP session scope 131-133
transport session scope 133, 134

SOAP, AXIOM
about 42
SOAP 1.1 document, creating 43
SOAP 1.2 document, creating 43

SOAP processing model
about 20, 21
InFlow pipe 21, 22
OutFlow pipe 21, 22

SOAP session scope 131-133
SOAP standard 12
SOAP with Attachments. See SWA
source distribution 18
special handlers. See execution chain
standards, web services

about 10, 11
service description 13
SOAP standard 12
Web Services Addressing

(WS-Addressing) 12
web services description language

(WSDL) 13
XML-RPC standard 11

static data hierarchy. See Axis2 static data
SWA 150
synchronous invocation 112

service, utilizing 112

T
transport receiver 56
transports

about 21, 26
HTTP/HTTPS protocol 26
JMS protocol 26
protocols 26

SMTP protocol 26
TCP protocol 26
transport receivers 26
transport senders 26
XMPP protocol 26

transport sender 58
transport session scope 133, 134

U
user phase 23

V
visual tools 140

W
WAR distribution

about 17
installing 17

web service, deploying
approaches 137
code first approach 137
contract first approach 140

web services
benefits 8
deploying, as service archive file 87
history 7
lifecycle 14
model 10
overview 8, 9
standards 10

Web Services Addressing
(WS-Addressing) 13

Web Services Description Language.
See WSDL

WS-policy 105
WSDL 13, 140

X
XML-RPC standard 11
XML Binary Optimized Packaging.

See XOP
XML processing model 20, 21
XOP 150

	Quickstart Apache Axis2
	Table of Contents
	Preface
	Chapter 1: Introduction
	Web Service History
	Web Services Overview
	How Do Organizations Move into Web Services?

	Web Services Model
	Web Services Standards
	XML-RPC
	SOAP
	Web Services Addressing (WS-Addressing)
	Service Description
	Web Services Description Language (WSDL)

	Web Services Life Cycle
	Apache Web Service Stack
	Why Axis2?
	Download and Install Axis2
	Binary Distribution
	WAR Distribution
	Source Distribution
	JAR Distribution

	Summary

	Chapter 2: Looking into Axis2
	Axis2 Architecture
	Core Modules
	XML Processing Model
	SOAP Processing Model
	Information Model
	Deployment Model
	Client API
	Transports

	Other Modules
	Code Generation
	Data Binding

	Extensible Nature of Axis2
	Service Extension of the Module
	Custom Deployers
	Message Receivers

	Summary

	Chapter 3: AXIOM
	Overview and Features
	What is Pull Parsing?

	AXIOM—Architecture
	Working with AXIOM
	Creating an AXIOM
	Creating an AXIOM from an Input Stream
	Creating an AXIOM Using a String
	Creating an AXIOM Programmatically
	Adding a Child Node and Attributes
	Working with OM Namespaces
	Working with Attributes
	Traversing the AXIOM Tree
	Serialization
	Advanced Operations with AXIOM
	Using OMNavigator for Traversing
	Xpath Navigation
	Accessing the Pull-Parser
	AXIOM and SOAP

	Summary

	Chapter 4: Execution Chain
	Handler
	Writing a Simple Handler

	Phase
	Types of Phases
	Global Phase
	Operation Phase

	Phase Rules
	Phase Name
	phaseFirst
	phaseLast
	before
	after
	after and before

	Invalid Phase Rules
	Flow

	Module Engagement and Dynamic Execution Chain
	Special Handlers in the Chain
	TransportReceiver
	Dispatchers
	MessageReceiver
	TransportSender

	Summary

	Chapter 5: Hacking Deployment
	What's New in Axis2 Deployment?
	J2EE-like Deployment Mechanism
	Hot Deployment and Hot Update
	Repository
	Change in the Way of Deploying Handlers (Modules)
	New Deployment Descriptors
	Global Descriptor (axis2.xml)
	Service Descriptor (services.xml)
	Module Descriptor (module.xml)

	Available Deployment Options
	Archive-Based Deployment
	Directory-Based Deployment
	Deploying a Service Programmatically
	POJO Deployment
	Deploying and Running a Service in One Line

	Summary

	Chapter 6: Information Model
	Introduction
	Axis2 Static Data
	AxisConfiguration
	Parameters
	MessageFormatters and MessageBuilders
	TransportReceiver and TransportSender
	Flows and PhaseOrder

	AxisModule
	Service Description Hierarchy
	AxisServiceGroup
	AxisService
	AxisOperation
	AxisMessage

	Axis2 Contexts
	ConfigurationContext
	ServiceGroupContext
	ServiceContext
	OperationContext
	MessageContext

	Summary

	Chapter 7: Writing an Axis2 Service
	Introduction
	Code-First Approach
	Single-Class POJO Approach
	POJO with Class Having Package Name

	Deploying a Service Using a Service Archive File
	Writing the services.xml File
	Service Implementation Class
	Specifying the Message Receiver
	Creating a Service Archive File
	Different Ways of Specifying Message Receivers
	Specify Message Receivers at the Operation Level
	Specify Message Receivers at the Service Level for the Whole Service
	Specify Service-Level Message Receivers and Override Them with Operations

	Service Group and Single Service
	Adding Third-Party Resources
	Service WSDL and Schemas

	Contract-First Approach—Starting from WSDL
	Generating Code
	Filling the Service Skeleton
	Running the Ant Build File
	Deploying the Ant-Created Service Archive File

	Summary

	Chapter 8: Writing an Axis2 Module
	Introduction
	Module Concept
	Module Structure
	Module Configuration File (module.xml)
	Handlers and Phase Rules
	Parameters

	Module Implementation Class
	WS-Policy
	Endpoints

	Writing the module.xml File
	Deploying and Engaging the Module
	Advanced module.xml

	Summary

	Chapter 9: Client API
	Introduction
	Blocking and Non-Blocking Invocation
	Inside Axis2 Client API
	ServiceClient API
	Available Ways of Creating a ServiceClient
	ServiceClient with a Working Sample

	Working with OperationClient

	Summary

	Chapter 10: Session Management
	Introduction
	Stateless Nature of Axis2
	Types of Sessions in Axis2
	Session Creation and Session Destruction
	Java Reflection
	Using the Optional Interface
	Accessing MessageContext

	Request Session Scope
	SOAP Session Scope
	Transport Session Scope
	Application Scope
	Managing Session Using ServiceClient

	Summary

	Chapter 11: Contract First or Code First
	Introduction
	Code-First Approach
	Why Not the Code-First Approach?
	Contract-First Approach: Why is it So Special?
	Code-Generation Support in Axis2
	Sample 1: Use Default Code-Generation Options to Generate Server-Side Code
	Sample 2: Use a Different Databinding
	Sample 3: Generate an Interface Instead of a Concrete Class
	Sample 4: Generating Client-Side Code

	Summary

	Chapter 12: Advanced Topics
	REST—Representational State Transfer
	Features of REST
	REST Services in Axis2

	MTOM—Message Transmission Optimization Mechanism
	MTOM on the Client Side
	MTOM on the Service Side

	Axis2 ClassLoader Hierarchy
	Sharing Libraries Using the Class Loader Hierarchy
	Axis2 Configurator
	Deploying Axis2 in Various Application Servers
	Summary

	Index

